一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)
反向传播算法(Backpropagation Algorithm,简称BP算法)是深度学习的重要思想基础,对于初学者来说也是必须要掌握的基础知识!本文希望以一个清晰的脉络和详细的说明,来让读者彻底明白BP算法的原理和计算过程。
全文分为上下两篇,上篇主要介绍BP算法的原理(即公式的推导),介绍完原理之后,我们会将一些具体的数据带入一个简单的三层神经网络中,去完整的体验一遍BP算法的计算过程;下篇是一个项目实战,我们将带着读者一起亲手实现一个BP神经网络(不使用任何第三方的深度学习框架)来解决一个具体的问题。
图 1 所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本 ,通过前向运算得到输出 。输出值 的值域为 ,例如 的值越接近0,代表该样本是"0"类的可能性越大,反之是"1"类的可能性大。
为了便于理解后续的内容,我们需要先搞清楚前向传播的计算过程,以图1所示的内容为例:
输入的样本为:
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
第一层隐藏层有三个神经元: 、 和 。该层的输入为:
以 神经元为例,则其输入为:
同理有:
假设我们选择函数 作为该层的激活函数(图1中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为: 、 和 。
第二层隐藏层有两个神经元: 和 。该层的输入为:
即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到和的输入分别为:
该层的输出分别为: 和 。
输出层只有一个神经元 :。该层的输入为:
即:
因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为: 。
在1.1节里,我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为 ,其中 是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重 和偏置 )的偏导数。
假设我们要对第 层隐藏层的参数 和 求偏导数,即求 和 。假设 代表第 层神经元的输入,即 ,其中 为前一层神经元的输出,则根据链式法则有:
因此,我们只需要计算偏导数 、 和 。
前面说过,第k层神经元的输入为: ,因此可以得到:
上式中, 代表第 层神经元的权重矩阵 的第 行, 代表第 层神经元的权重矩阵 的第 行中的第 列。
我们以1.1节中的简单神经网络为例,假设我们要计算第一层隐藏层的神经元关于权重矩阵的导数,则有:
因为偏置b是一个常数项,因此偏导数的计算也很简单:
依然以第一层隐藏层的神经元为例,则有:
偏导数 又称为 误差项(error term,也称为“灵敏度”) ,一般用 表示,例如 是第一层神经元的误差项,其值的大小代表了第一层神经元对于最终总误差的影响大小。
根据第一节的前向计算,我们知道第 层的输入与第 层的输出之间的关系为:
又因为 ,根据链式法则,我们可以得到 为:
由上式我们可以看到,第 层神经元的误差项 是由第 层的误差项乘以第 层的权重,再乘以第 层激活函数的导数(梯度)得到的。这就是误差的反向传播。
现在我们已经计算出了偏导数 、 和 ,则 和 可分别表示为:
下面是基于随机梯度下降更新参数的反向传播算法:
单纯的公式推导看起来有些枯燥,下面我们将实际的数据带入图1所示的神经网络中,完整的计算一遍。
我们依然使用如图5所示的简单的神经网络,其中所有参数的初始值如下:
输入的样本为(假设其真实类标为"1"):
第一层网络的参数为:
第二层网络的参数为:
第三层网络的参数为:
假设所有的激活函数均为Logistic函数: 。使用均方误差函数作为损失函数:
为了方便求导,我们将损失函数简化为:
我们首先初始化神经网络的参数,计算第一层神经元:
上图中我们计算出了第一层隐藏层的第一个神经元的输入 和输出 ,同理可以计算第二个和第三个神经元的输入和输出:
接下来是第二层隐藏层的计算,首先我们计算第二层的第一个神经元的输入z₄和输出f₄(z₄):
同样方法可以计算该层的第二个神经元的输入 和输出 :
最后计算输出层的输入 和输出 :
首先计算输出层的误差项 ,我们的误差函数为 ,由于该样本的类标为“1”,而预测值为 ,因此误差为 ,输出层的误差项为:
接着计算第二层隐藏层的误差项,根据误差项的计算公式有:
最后是计算第一层隐藏层的误差项: