极坐标下的二重积分是什么?
极坐标下的二重积分是 x^2+y^2,特别是含有它们的分数方次的情况。
例如以下两种情形通常的二重积分使用极坐标计算:
1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。
2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。
若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便。
二重积分几何意义:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。
数值意义:
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
如函数,其积分区域D是由所围成的区域。
其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。
故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
2024-04-08 广告