正交矩阵一定是实对称矩阵吗?
1个回答
展开全部
实对称矩阵有可能是正交矩阵,但是不是所有的实对称阵都是正交矩阵。 这里的P是是对称矩阵,且刚好P的逆等于P的转置,所以P也是正交矩阵。这只是一种特殊情况。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵 。
正交矩阵和实对称矩阵的区别:
1、实对称矩阵的定义是:如果有n阶矩阵A,其各个元素都为实数,矩阵A的转置等于其本身,则称A为实对称矩阵。
2、正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I。
对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A。
3、 转换矩阵是正交矩阵不代表被转换矩阵一定是实对称矩阵 反过来 实对称矩阵的相似对角化也不一定非要正交矩阵。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
应该说是:实对称阵属于不同特征值的的特征向量是正交的。设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量.则p1(Aq)=p1(nq)=np1q(p1A)q=(p1A1)q=(AP)1q=(m...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询