凸函数二阶导数是斜率不断下跌即斜率的导数小于0,即原函数的二阶导数小于0。当二阶导数大于0,说明一阶导数单调递增。根据f(x)不是先减后增就是先增后减,所以,在此情下,f(x)只能为先减后增了。所以,在二阶导数大于0时,函数为凹函数。同理可证二阶导数小于0时,函数为凸函数。
函数的定义
函数的二阶导代表的就是函数每个点切线斜率的变化,凸函数的每个点的切线斜率是随着自便量x的增大而减小,所以反映这一特点的话就得使得凸函数的二阶导小于零,二阶导数大于0,函数图像是凹下去的,在定义上是凸函数任意两点的弧段总在这两点连线的下方。