什么叫极限啊?

 我来答
leisure_75

2022-07-04 · 还没有填写任何签名哦
leisure_75
采纳数:14140 获赞数:76314

向TA提问 私信TA
展开全部
“极限”是微积分的基础概念,它是近代数学的一种重要思想。
广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
PasirRis白沙
高粉答主

2022-07-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:2995万
展开全部
请楼主参看下面的解说,看看能不能理解 ε-δ 方法。

下面是本人两次回答的记录。

【第一次的回答】

一、极限的计算:

就是算出当x无限地趋向于某个值x。时,函数 f(x) 越来越无止境地趋向于何值?
在一般情况下,就是直接代入。

有些情况是无法直接代入的,这就是不定式的七种类型,譬如分子分母都趋向于0,
我们就不能分子分母都代入0。而是要找出它们的比例究竟越来越趋向于什么数,
这样的结果,我们就产生了各种各样的计算极限的方法。

二、极限理论的证明。

这部分不好理解,请楼主细细看看下面的解释,会忽然开通。

1、极限的最早萌芽概念,我们祖先也有过,但是被当成诡辩学而埋葬了。
时至今日,仍有绝大多数数学教师,一提到诡辩学,立马教条式地彻
底否认,没有思辨的任何理性空间。

2、鬼子的祖先,也有诡辩学,他们认认真真地研究了paradox,由此而
建立了极限理论。极限理论是桥梁,桥的这边是初等数学,桥的那边
是微积分,是高等数学。我们的理论贡献局限在桥这边,桥那边的理
论世界的建设,我们几乎完全是手无寸功,我们在科研上的落后就是
从这里开始的。

3、极限的理论究竟是什么呢?

第一,极限的证明理论

这就是我们的大学新生大学伊始时,兴致勃勃地心情遇到的第一记沉重
的闷棍。极限的理论,其实是吵架的理论,是无止境争辩的过程,也是
无穷列举法的理论化过程。例如:
(1)、我说当 x 无限趋向于 2 时,x² 就无限趋近于 4。
(2)、你不信,你要我证明给你看。
(3)、我说,那你随便给一个很小的数,你给了0.5。
(4)、我通过计算,我说只要 x = 2.10 就行。
(5)、你反悔了,改成了0.4。
(6)、我重新计算了一下,我说只要 x = 2.09 就行。
(7)、你又反悔,又改成了0.3。
(8)、我又重新计算,我说只要 x = 2.07 就行。
(9)、你再次反悔,再改成0.2。
(10)、我再次计算,我说只要 x = 2.04 就行。

、、、、你不断地反悔,不断地提出越来越苛刻的数据,我也不断地计算,
不断给出越来越接近于2的具体数,也就是越来越限制了 x 趋近于 2 的程
度、、、、、

结果我们都厌烦了。

(11)、我说,别闹了,你给出一个可以表示很小很小的象征性的数字吧。
(12)、你给出了一个代号 ε。
(13)、我根据你的代号 ε,经过一番计算,找到了另外一个数字代号 δ。
我对你说,你自己随便找一个跟 2 的差距不大于 δ 的数就可以了。
算了,算了,我把计算公式也给你吧,你自己出 ε,自己去找 δ,
这样你还有什么话说?

争吵就这样结束了,无穷列出变成了一个理论计算过程,结果就得到了证明。

这个证明逻辑思路是:

只要你给得出一个无论多小的数,ε;
我就能根据你的 ε,算出一个 δ ;
只要将x 的取值,限制在 δ 的范围内,函数值与极限值之差就小于 ε。
由于 ε可以任意的小,两者之差可以无止境的小下去,就证明了极限。

δ 是根据 ε 算出的,我算出一个δ,你可以用比我更小的 δ 限制 x 的范围,
所以,ε是任给的,δ 是根据 ε 推算的,但 δ 不是唯一的,可以有无数个
更严格的、更小的值。所以说,总存在一个 δ,但是这个 δ,必须由我们
去根据 ε找出来。

第二、极限的计算
微积分的前面部分,就是寻找各种计算方法,最典型的是罗毕达法则。

第三、极限的运用
可以说极限是微积分的基础,也可以说,微积分是极限理论的运用。

如果你不能明白极限的理论证明方法,
那么,我们得恭喜你!你真正理解了我们传统的优秀数学史,到了近代数学时,
怎么突然落后了、落伍了。当代理论,我们没有参与建立,迄今为止,我们还
处于三流开外。

如果你明白了极限的理论证明方法,
那么,我们得祝贺你!你真正开始领略到了现代数学、现代科学的真谛。体会
到了我们传统的、定性、模棱两可、之乎者也的学风,更现代数学、现代科学、
现代医学、、、、、之间的鸿沟是多么得深,多么得广,多么得不可同日而语。

【第二次的回答】

1、ε 是任意给的,但不是确定的!
ε 可以随时更改,可以改得越来越小,但 ε 并不是无穷小;
ε 仅仅是一个象征性的很小的、可以任意更改的正数。

任意的意思:
可以任意地小;可以任意地更改;
针对任何一个给出的 ε 的情况下,找到 δ ,或 N,
这是极限证明的核心!

也就是说,
δ 或 N 是 ε 的函数,是由 ε 决定的;
随便更改 ε,δ 或 N 也随之更改。

2、就 ε-N 证明方法而言,
根据 ε ,计算出一个 N,这个 N 也不是固定的:
A、N 的取值跟 ε 紧密相关,或者说 N 由 ε 所确定;
B、但是,在具体证明时,为了证明过程的顺利进行,
可以取不同的 N。也就是说,根据 ε,解不等式,
原本可以解出一个 N,假设为 N₁,可能解题困难,
我们可以放大这个,变大成为 N₂,N₂ > N₁,为了
严格证明,我们取 N = N₂。
也可能写成 N = max{N₁, N₂, N₃, N₄, 、、、}。

然后,当 n > N 时,由极限计算式算出的值,跟极限值之差,
就小于 ε,证明就结束了。

3、极限证明的过程,其实就是:
A、一个争吵的过程;一个无穷列举理论化的过程;
B、一个无止尽耍赖皮的过程,ε 可以任意给,也就是可以更改,
根据 ε 找到 N 的过程,就是理论化的过程。无论怎样更改 ε,
无论怎样耍无赖,只要 ε 给得出,N 就找得到。
.
这个过程就是理论化的过程,就是tendency的过程。
.
只是我们的教学,过于花拳绣腿,大大咧咧地忽视了tendency,
仅仅着重于极限的限limiting、limitation。
.
如果认识不到这点,到头来,是不可能获得真正的感悟的。
.
学过极限证明理论的人每年千千万万,绝大多数,只是凑热闹而已。
他们永远悟不出真谛,包括绝大多数数学教师,都是人云亦云,不知所云。
.
加油吧!
极限理论已经成熟了几百年了,极限理论的建立与完善,
跟我们没有丝毫的关系,我们完全没有半毛钱的贡献!
极限理论,对我们来说,完全是舶来品!完全是山寨!
.
极限的理论,是鬼子建立的,是鬼子整合的,是鬼子完善的;
我们是,并且仅仅只是学习,只是摇旗呐喊,只是歌功颂德,
只是人云亦云,只是鹦鹉学舌,只是模仿秀,别无其他。
.
迄今为止,
A、我们的教师在教书时,会下意识地暗示学生,似乎极限理论的建立,
我们也起了什么作用!
B、极限理论似乎刚建立起来不久,更好像还在建立过程中!
这些是刻意的误导!刻意的忽悠!
.
经常有学生问:
1、极限理论研究的现状如何?
2、我国目前对极限研究的现状如何?
、、、、、、、、、
这些问题的提出,都一再表明,可怜的孩子们已经被可恶的教师们当成了白痴在玩弄!
.
加油吧!任重而道远!
任重在于,雪耻教师们对当代科学毫无贡献的耻辱!
道远在于,纠正教师们有意无意的根深蒂固的误导!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式