图像特征提取-SIFT
1个回答
展开全部
滤波一般指就是一个二维矩阵(卷积核),卷积就是用这个矩阵与原图像进行卷积运算得到一个新的图像。
尺度是一个视觉问题,不是数学问题,简单的来讲就是你在不同距离上观察一个物体,产生的视觉感受是不同的。比如你站在不同距离观察一片雪花,离的越远你感受的形状越接近于a->b->c->d的顺序,就是越远,你看到的越是一个大概的轮廓。
一幅图像的SIFT特征提取,分为4个步骤:
SIFT特征点其实就是尺度空间中稳定的点/极值点,那么,为了得到这些稳定点
对于一幅输入图像,为了进行sift特征检测、实现scale-invariant(任何尺度下都能够有对应的特征点),需要对该图像的尺度空间进行分析,即建立高斯金字塔图像、得到不同scale的图像,这里的高斯金字塔与最原始的高斯金字塔稍微有点区别,因为它在构造尺度空间时,将这些不同尺度图像分为了多个Octave、每个Octave又分为了多层。下图给出了Sift中的高斯金字塔的结构图;
构造完尺度空间(差分高斯金字塔)后,接下来的任务就是“在尺度中间中检测出图像中的稳定特征点”:
对于DoG中每一个采样点(每一个Octave中每一层),将其与它邻域内所有像素点(8+18=26)进行比较,判断其是否为局部极值点(极大或者极小),更加具体地:如下图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点。但要注意:这种相邻层之间的极值点的寻找是在同一Octave中的相邻尺度之间进行寻找的,而不要跨组!
通过拟和“三维二次函数”可以精确确定关键点的位置和尺度(达到亚像素精度),具体方法还未知,可以得到一系列的SIFT候选特征点集合,但由于这些关键点中有些具有较低的对比对,有些输属于不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),所以,为了增强匹配稳定性、提高抗噪声能力,应该将这2类关键点去除,实现对候选SIFT特征点集合的进一步净化:
上面只是得到了每个关键点的方向,接下来,需要确定每个关键点的特征向量,具体方式如下:
现有A、B两幅图像,分别利用上面的方法从各幅图像中提取到了k1个sift特征点和k2个特征点及其对应的特征描述子,即k1 * 128维和k2 * 128维的特征,现在需要将两图中各个scale(所有scale)的描述子进行匹配。
接下来采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。
[1] SIFT特征提取及匹配
[2] 图像处理之特征提取
尺度是一个视觉问题,不是数学问题,简单的来讲就是你在不同距离上观察一个物体,产生的视觉感受是不同的。比如你站在不同距离观察一片雪花,离的越远你感受的形状越接近于a->b->c->d的顺序,就是越远,你看到的越是一个大概的轮廓。
一幅图像的SIFT特征提取,分为4个步骤:
SIFT特征点其实就是尺度空间中稳定的点/极值点,那么,为了得到这些稳定点
对于一幅输入图像,为了进行sift特征检测、实现scale-invariant(任何尺度下都能够有对应的特征点),需要对该图像的尺度空间进行分析,即建立高斯金字塔图像、得到不同scale的图像,这里的高斯金字塔与最原始的高斯金字塔稍微有点区别,因为它在构造尺度空间时,将这些不同尺度图像分为了多个Octave、每个Octave又分为了多层。下图给出了Sift中的高斯金字塔的结构图;
构造完尺度空间(差分高斯金字塔)后,接下来的任务就是“在尺度中间中检测出图像中的稳定特征点”:
对于DoG中每一个采样点(每一个Octave中每一层),将其与它邻域内所有像素点(8+18=26)进行比较,判断其是否为局部极值点(极大或者极小),更加具体地:如下图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 一个点如果在DOG尺度空间本层以及上下两层的26个领域中是最大或最小值时,就认为该点是图像在该尺度下的一个特征点。但要注意:这种相邻层之间的极值点的寻找是在同一Octave中的相邻尺度之间进行寻找的,而不要跨组!
通过拟和“三维二次函数”可以精确确定关键点的位置和尺度(达到亚像素精度),具体方法还未知,可以得到一系列的SIFT候选特征点集合,但由于这些关键点中有些具有较低的对比对,有些输属于不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),所以,为了增强匹配稳定性、提高抗噪声能力,应该将这2类关键点去除,实现对候选SIFT特征点集合的进一步净化:
上面只是得到了每个关键点的方向,接下来,需要确定每个关键点的特征向量,具体方式如下:
现有A、B两幅图像,分别利用上面的方法从各幅图像中提取到了k1个sift特征点和k2个特征点及其对应的特征描述子,即k1 * 128维和k2 * 128维的特征,现在需要将两图中各个scale(所有scale)的描述子进行匹配。
接下来采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。
[1] SIFT特征提取及匹配
[2] 图像处理之特征提取
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询