设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式
展开全部
由Aa1=a1+2a2+3a3,
Aa2=2a2+3a3,
Aa3=3a2-4a3可以知道,
A(a1,a2,a3)=(a1,a2,a3)(1, 0, 0
2, 2, 3
3, 3,-4)
显然A,(a1,a2,a3)以及 (1, 0, 0 都是同阶方阵
2, 2, 3
3, 3,-4)
所以|A|×|a1,a2,a3|=|a1,a2,a3|×|1, 0, 0
2, 2, 3
3, 3,-4|
而三维列向量a1,a2,a3线性无关,所以行列式|a1,a2,a3|不等于0,可以约去
于是|A|=|1, 0, 0 = 2*(-4) - 3*3= -17
2, 2, 3
3, 3,-4|
故A的行列式为 -17
Aa2=2a2+3a3,
Aa3=3a2-4a3可以知道,
A(a1,a2,a3)=(a1,a2,a3)(1, 0, 0
2, 2, 3
3, 3,-4)
显然A,(a1,a2,a3)以及 (1, 0, 0 都是同阶方阵
2, 2, 3
3, 3,-4)
所以|A|×|a1,a2,a3|=|a1,a2,a3|×|1, 0, 0
2, 2, 3
3, 3,-4|
而三维列向量a1,a2,a3线性无关,所以行列式|a1,a2,a3|不等于0,可以约去
于是|A|=|1, 0, 0 = 2*(-4) - 3*3= -17
2, 2, 3
3, 3,-4|
故A的行列式为 -17
展开全部
Aa1=(a1 a2 a3)*(1 2 3)T
Aa2=(a1 a2 a3)*(0 2 3)T
Aa3=(a1 a2 a3)*(0 3 -4)T
(a1 a2 a3)*(1 0 0)
(2 2 3) =(Aa1,Aa2,Aa3)=A*(a1 a2 a3)
(3 3 -4)
因为a1 a2 a3线性无关,于是(a1 a2 a3)的秩为3,于是行列式|a1 a2 a3|不为0
所以|A|=(1 0 0)的行列式,为-17
(2 2 3)
(3 3 -4)
Aa2=(a1 a2 a3)*(0 2 3)T
Aa3=(a1 a2 a3)*(0 3 -4)T
(a1 a2 a3)*(1 0 0)
(2 2 3) =(Aa1,Aa2,Aa3)=A*(a1 a2 a3)
(3 3 -4)
因为a1 a2 a3线性无关,于是(a1 a2 a3)的秩为3,于是行列式|a1 a2 a3|不为0
所以|A|=(1 0 0)的行列式,为-17
(2 2 3)
(3 3 -4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询