定积分的分部积分法公式如下:
(uv)'=u'v+uv'。
得:u'v=(uv)'-uv'。
两边积分得:∫u'v dx=∫(uv)' dx -∫uv' dx。
即:∫u'v dx = uv -∫uv' dx,这就是分部积分公式。
也可简写为:∫v du = uv -∫u dv。(左下角的下方写下限a和左上角的上方写上限b)。
定积分的相关介绍
定积分是积分的一种,是函数在区间上积分和的极限。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。