∫xdx/根号下(1+x-x^2),怎么下手。。。
1个回答
展开全部
∫ x/√(1 + x - x²) dx
= ∫ x/√[5/4 - (x - 1/2)²] dx
Let x - 1/2 = √5/2 siny and dx = √5/2 cosy dy
Then √[5/4 - (x - 1/2)²] = √[5/4 - 5/4 sin²y] = √5/2 cosy
x = √5/2 siny + 1/2
==> ∫ (√5/2 siny + 1/2)/(√5/2 cosy) * (√5/2 cosy) dy
= (√5/2)∫ siny dy + (1/2)∫ dy
= (√5/2)(-cosy) + (1/2)y + C
= (-√5/2) * 2√(1 + x - x²)/√5 + (1/2) arcsin[(2x - 1)/√5] + C
= -√(1 + x - x²) + (1/2) arcsin[(2x - 1)/√5] + C
Notes:
siny = (x - 1/2)/(√5/2) = (2x - 1)/√5
cosy = √[5 - (2x - 1)²]/√5 = 2√(1 + x - x²)/√5
= ∫ x/√[5/4 - (x - 1/2)²] dx
Let x - 1/2 = √5/2 siny and dx = √5/2 cosy dy
Then √[5/4 - (x - 1/2)²] = √[5/4 - 5/4 sin²y] = √5/2 cosy
x = √5/2 siny + 1/2
==> ∫ (√5/2 siny + 1/2)/(√5/2 cosy) * (√5/2 cosy) dy
= (√5/2)∫ siny dy + (1/2)∫ dy
= (√5/2)(-cosy) + (1/2)y + C
= (-√5/2) * 2√(1 + x - x²)/√5 + (1/2) arcsin[(2x - 1)/√5] + C
= -√(1 + x - x²) + (1/2) arcsin[(2x - 1)/√5] + C
Notes:
siny = (x - 1/2)/(√5/2) = (2x - 1)/√5
cosy = √[5 - (2x - 1)²]/√5 = 2√(1 + x - x²)/√5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询