已知cos2X=根号2/3,则sin^4X+cos^4的值为?求详细过程!
2个回答
展开全部
y=sin^4x+cos^4x
=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x
=(sin^2 2x+cos^2 2x)^2-(1/2)(2sinxcosx)^2
=1-(1/2)(sin2x)^2
=1-(1/2)(1-cos^2 2x)
=1-1/2*(1-2/9)
=1-7/18
=11/18
=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x
=(sin^2 2x+cos^2 2x)^2-(1/2)(2sinxcosx)^2
=1-(1/2)(sin2x)^2
=1-(1/2)(1-cos^2 2x)
=1-1/2*(1-2/9)
=1-7/18
=11/18
追问
sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x
怎么得到=(sin^2 2x+cos^2 2x)^2-(1/2)(2sinxcosx)^2
怎么X变成2X??
追答
sin^4x+2sin^2xcos^2x+cos^4x=[(sin^2(2x)+cos^2( 2x)]^2
(1/2)(2sinxcosx)^2=1/2*4*sin^2xcos^2x=2sin^2xcos^2x
明白了吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询