求50道应用题

范姜梦雨Ca2cb
2012-02-11 · TA获得超过597个赞
知道答主
回答量:165
采纳率:0%
帮助的人:167万
展开全部
1.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元:
⑴什么情况下,购会员证与不购会员证付一样的钱?
⑵什么情况下,购会员证比不购会员证更合算?
⑶什么情况下,不够会员证比购会员证更合算?
注意:解题过程完整,分步骤,能用方程解的用方程解

80+X=3x
80=2X
X=40
X=40,购会员证与不购会员证付一样的钱
X>40购会员证比不购会员证更合算
X<40不够会员证比购会员证更合算

2.从A地到B地,先下坡然后走平路,某人骑自行车以每小时12千米的速度下坡,而以每小时9千米的速度通过平路,到达B地共用55分钟。回来时以每小时8千米的速度通过平路,而每小时4千米的速度上坡,回到A地共用1.5小时。从A地到B地有多少千米?
设坡路为x千米,平路为y千米
则有
x/12+y/9=55/60
y/8+x/4=1.5
解方程得x=3,y=6
所以a,b两地距离为x+y=9

3.初一1班取走了100棵,又取走余下的10分之一,初一2班取走了200棵,又取走余下的10分之一......,如此下去,最后全部树苗被各班取完,而且各班所得的树苗相等,问共有多少棵树苗?初一年级有多少个班?
设共有x棵树
100+(x-100)/10=200+[x-100-(x-100)/10-200]/10
100+x/10-10=200+x/10-10-x/100+1-20
x=8100
所以第一个班取走100+(8100-100)/10=900棵树
共有8100/900=9个班

4.当雷雨持续时间t(时)可以用公式估计:t^2=d^3/900,d(千米)表示雷雨区域的直径.
雷雨区域直径为6千米,雷雨大约能持续多长时间?
雷雨持续1小时,雷雨区域直径大约是多少?
1、t^2=d^3/900
t^2=6^3/900
t=根号6/5
2、t^2=d^3/900
1^2=d^3/900
d=三次根号900

5.从甲站到乙站共有800千米,开始400千米是平路,接着300千米是上坡路,余下的是下坡路,已知火车在上坡路,平路,下坡路,的速度比是3:4:5.若火车在平路上的速度是80千米/小时,那么它从甲站到乙站所用的时间比从乙站到甲站所用的时间多多少?若要求火车来回所用时间相同,那么火车从甲站到乙站在平路上的速度与乙站到甲站的平路上的速度比是多少?
上坡速度:平路:下坡=3:4:5,平路速度=80,
所以上坡速度=60,下坡=100,
甲到乙时间:400/80+300/60+100/100=11,
乙到甲时间:100/60+300/100+400/80=29/3,
所以多11-29/3=4/3小时,
(2)设甲到乙平路速度为x,乙到甲为y,依题意:400/x+300/[(3/4)x]+100/[(5/4)x]=400/y+300[(5/4)y]+100/[(3/4)y]
解得:x/y=33/29

6.某校运动会在400米环形跑道上进行10000米比赛。甲乙两运动员同时起跑后,乙速超甲速,在15分钟时甲加快速度,在第18分钟时甲追上乙并开始超过乙,在第23分钟时,甲再次超过乙,而在第23分50秒时,甲到达终点,那么乙跑完全程的时间是多少?
.在第18分时甲追上乙并且开始超过乙,在第23分时甲再次追上乙。说明:甲5分钟比乙多跑400米。所以甲乙的速度差是400÷5=80米。
2.在第15分时甲加快速度,在第18分时甲追上乙并且开始超过乙,说明:甲3分钟追上乙,原来两人差了:80×3=240(米) 这是原来乙速比甲速快造成的,是开始的15分造成的.所以原来乙速比甲速快:240÷15=16米,现在甲速比乙速快80米,说明甲提速:16+80=96米
3.设原来甲速每分x米,现在甲速每分x+96米
15x+(x+96)×(23又5/6-15)=10000
x=384
所以原来乙速:384+16=400米
乙跑完全程所用的时间是:10000÷400=25分

7.我部队到某桥头阻止敌人出发时敌人离桥头24千米,我部队离桥30千米。我部队急行军速度是敌人的1。5倍结果比敌人提前48分钟到达。求部队速度?
设敌人速度x千米/分钟
30/1.5x +48=24/x
x=1/12
部队速度=1.5*1/12=0.125

8.某公司销售甲、乙两种球鞋,去年共卖出12200双。今年甲种鞋卖出的量比去年多6%,乙种鞋卖出的量比去年减少5%,两种鞋的总销量增加了50双。去年甲、乙两种球鞋各卖了多少双?
设去年卖出甲种球鞋x双,则乙种卖出(12200-x)双
则今年卖出甲种球鞋(1+6%)x双,则乙种卖出(1-5%)(12200-x)双
有题意
12200+50=(1+6%)x+(1-5%)(12200-x)
12250=11%+11590
11%x=660
x=6000
12200-x=6200
答:甲种卖出6000双,乙种卖出6200双

9.爷与孙子下棋,共下了12盘棋(未出现和棋)后,得分相同,爷爷赢一局记1分,孙子赢一局记3分,问爷爷和孙子各赢了几局?用方程
解:设爷爷赢了x局

x=3(12-x)

x=9

孙子赢了:12-9=3局

10.一份文件需要打印,小李独自完成需要6小时,小王独自完成需要8小时.如果他们俩共同完成需要多长时间?
1/(1/6+1/8)=24/7小时

11.为了使贫困学生能够顺利地完成大学学业.国家设立了助学贷款.助学贷款分0.5~1学期.1~3学期,3~5学期.5~8学期四种.贷款利率分别为5.85%.5.95%.6.03%.6.21%.贷款利息的50%由政府补偿.某大学一位新生准备贷款6年.他预计6年后最多能一次性还清20000元.他现在至多可以贷多少元?(可借助计算器).
设至多可贷款x元
(4*6.21%*0.5+2*6.21%+1)x=20000
得出x=16020.506 元

12有一种足球是由32块黑白相间的牛皮缝制而成的,黑皮是五边形,白皮是六边形,他们的边长都相等。求白皮和黑皮的块数
解:设白块有x个,则黑块有(32-x)个。
5(32-x):6x=1:2
x=20
32-x=32-20=12(个)
答:白块有20个,黑块有12个。

13.水果店买进苹果若干,每个进价3元,如果每个5元卖出,那么卖出全部的一半多10个时收回全部成本,共卖了多少个?
设苹果X个
3X=5X/2+10×5
即得X=100(个)

14.乘车,原计划租用30座位客车若干两,但有5人没座位,如果租35座位客车,恰可少一辆,每辆刚好座满。已知30座位车租金165元,35座位车210元。初一多少人?
解:设原计划租X辆车。
30X+5=35(X-1)
30X+5=35X-35
-5X=-40
X=8
所以,初一人数为:30×8+5=245(人)

15某人原计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间内到达.但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比预定的时间早4分钟到达B地,求A,B两地间的距离?
A,B两地间的距离为x
15【x/12-(20+4)/60】=x
x=24

16.两枝成分不同且长度相等的蜡烛,其中一枝蜡烛3小时可燃烧完,另一枝4小时燃烧完。现在要求到下午四点钟时,其中一枝蜡烛的剩余部分恰是另一枝剩余部分的二倍,问应该在合时同时点燃这两枝蜡烛?
解:设在X小时前点燃。
〈1-1/4X〉/〈1-1/3X〉=2
X=12/11

17.A,B两地相距510千米,甲,乙两车分别由两地相向而行,若两车同时出发,则五又十分之一小时相遇;若乙先出发2小时,则甲出发后4小时相遇,求两车的速度?
510÷5又1/10=100(千米)这是两车的速度和。

(510-100×4)÷2=55(千米)这是乙车的速度。
100-55=45(千米)这是甲车的速度。

18.已知5台A型机器,1天生产的产品装满8箱后还剩4个,7台B型机器一天生产的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个,求每箱有多少个产品?
请用一元一次方程解
设:每箱X个
解析:5台A机1天生产8箱还4个,所以一台A机1天生产(8X+4)÷5个。
7台B机1天生产11箱还1个,所以一台B机1天生产(11X+1)÷7个。
因为题中说:每台A比B1天多生产1个
列式为:(8X+4)÷5-1=(11X+1)÷7
7(8X+4)-35=5(11X+1)
56X-28-35=55X+5
56X-7=55X+5
56X=55X+12
X=12
答:每箱中有12个产品。

19.某地居民生活用电基本价格为每度电0.4元,若每月用电超过60度,超出部分按基本电价的70%收费,某户居民六月份电费平均每度0.36元,六月份共用电多少度?交电费多少元?
设六月用了X

60*0.4+(X-60)*0.4*70%=0.36X
X=90

即用了90度,交了:90*0.36=32.4元

20.甲,乙两人登一座山,甲每分登高10米,并且先出发30分,乙每分登高15米,两人同时登上山顶.甲用多少时间登山?这座山有多高?
设甲用了x分钟时间登山,则乙用了(x-30)分钟时间登山,两人同时到达山顶,有

10x+10*30=15(x-30)
解得 x=150(分钟)
所以山高为:10x+10*30=1800米

21.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A.B两地间的路程.
36+36x2=108
因为是匀速行驶, 所以速度是一定的. 上午行了两个小时后相距36, 又行了两个小时错开相距36, 因此在两个小时内行了72, 代表每小时两人共行36. 由此推出在最初的两个小时两人也行了72( 36x2). 由于10点之后两人还没碰面, 相距36, 因此加上这36就是两地间距离108.

22.若a+3的绝对值与b-2的平方互为相反数,求a的b次幕的值
为绝对值和平方数都是大于等于0,所以:

a+3=0
b-2=0

a=-3
b=2

a^b=(-3)^2=9

23.下列是3家公司的广告:
甲公司:招聘1人,年薪3万,一年后,每年加薪2000元
乙公司:招聘1人,半年薪1万,半年后按每半年20%递增.
丙公司:招聘1人,月薪2000元,一年后每月加薪100元
你如果应聘,打算选择哪家公司?(合同期为2年)
甲:3+3.2=6.2万
乙:1+1.2+1.2*1.2+1.2*1.2*1.2=1+1.2+1.44+1.728=5.368万
丙:0.2*24+0.01+0.02+0.03+0.04+……0.12=4.8+0.78=5.58万

甲工资最高,去甲

24.1.某风景区集体门票的收费标准是:20人以内(含20人)。每人25元,超过20人的,超过的部分每人10元,某班51名学生该风景区浏览,购买门票要话多少钱?
20*25+(51-20)*10=810(元)

25.2.某公司推销某种产品,付给推销员每月的工资有两种方案:
方案一:不计推销多少都有600元底薪,每推销一件产品加付推销费2元;
方案二:不付底薪,每推销一件产品,付给推销费5元;
若小明一个月推销产品300件,那么他应选择哪一种工资方案比较合算?为什么?
方案一:600+2×300=1200(元)
方案二:300×5=1500(元)
所以方案二合算。

26.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?
设其中一件衣服原价是X无,另一件是Y元,那么
X(1+25%)=60,得X=40
Y(1-25%)=60,得Y=80
总的情况是售价-原价,40+80-60*2=0
所以是不盈不亏

27.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”,经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元罚款。求每台彩电的售价?
非法收入270元

原售价x
1.4x*0.8-x=270

x=2250

原售价2250元

28.机普通客舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付1323元,求该旅客的机票价?
设机票价为X,X+1.5%*X*10=1323
票价为1150.43元

29.小明在第一次数学测验中得了82分,在第二次测验中得了96分,在第三次测验中至少得多少分。才能使三次测验的平均成绩不少于90分?
均成绩不少于90分,则总分不少于3*90=270分。
所以第三次测验至少要得270-82-96=92分。

30.甲骑自行车从某城A地出发,2h后,乙步行从同路赶了3h后两人相距16km,此时乙继续前进追赶,甲在原地休息了11/3h后从原地返回,又经过1h,甲乙两人相距于C点.请问”C点距离某城A多远?
设甲的速度为X km/s,乙的速度为Y km/s。
因乙在追赶甲的3小时中,甲也在前进,所以有方程5x-3y=16
甲休息11/3小时,这是甲比乙少走的时间,他们走的路程为16KM
所以有方程 (1+11/3)y+x=16
解方程组可得
y=192/79(km)
x=368/79
因甲总计前进了5小时,又返回一小时,所以C点距A点距离应是4倍X
应该为1472/79 约为18.633 KM
即C点距离A点约18.633km远

32.某单位在商店订购了x件白衬衣和y件花衬衣,每件白衬衣的价格是花衬衣价格的一倍半.当衬衣买来之后,发现白衬衣和花衬衣的件数和原来想买的件数刚好互换了,经查对,是订单填错了,用分式表示出按原来的设想需要的钱数与实际应付的数之比.

设单件白衬衣的价钱为z,则花的为2z
设想的钱数为:xz+2yz (注:x件白衬衣和y件花衬衣的花费)
实际的钱数为:2xz+yz (注:x件花衬衣和y件白衬衣的花费)
一求比值得我们所求结果为:(x+2y)/(2x+y)

33.某校初一有师生199人要租车外出旅游。如果租用可乘坐45名乘客的甲种旅行车,毎辆租金400元;如果租用可乘坐32名乘客的乙种旅行车,毎辆租金300元。若同时租两种车,费用最低是各租多少辆?最低费用是多少元?

199=45*3+32*2
400*3+300*2=1800yuan

34.某城市的出租车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,毎行驶1千米加1.2(不足1千米也按1千米计
)。现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?
解:
因为超过10元,所以超过5千米。
设路程为x千米
(x-5)*1.2+10=17.2
解得:x=11
答:......

35.两地相距300KM,一船航行于两地之间,若顺水需15H,逆流需20H 求船航行在静水和逆水中的速度格式多少?
首先了解;顺水速度=船速+水流速度;逆水速度=船速-水流速度
那么顺水速度*15就等于两地的距离300km,逆流速度*20也等于300km
解:设船速为x千米/时,水流速度为y千米/时.
15(x+y)=300
20(x-y)=300
解得x=17.5 y=2.5
则船在静水中的速度是17.5km/时,逆水速度是(17.5-2.5)=15km/时

36.现有1角,5角,1元硬币各10枚,从中取出15枚,共值7元.1角,5角,1元硬币各去多少枚?
实际上7元是个整数:
一如果没有1角的不会有15枚.
二如果有1角的,那么1角的只能是5枚或10枚或0枚:
①如果1角的有5枚,那么5角的枚数应该是单数,5角的只能是9,7,5枚,分析一下9枚不行,7枚刚好,5枚也不行.则可以得到一个结果:1角的5枚,5角的7枚,1元的3枚.
②如果1角的有10枚,那么5角的枚数应该是双数,5角的只能是4,2,0枚(共15枚),分析一下0枚的不行,2枚的也不行,4枚的还是不行.
③如果没有1角的,那么5角和1元的共15枚其组合的最小值应该是10个5角的和5个1元的,共10元,不行.
最终结果就是:1元的3枚,5角的7枚,1角的5枚.

37.一辆公共汽车上有(5A-4)名乘客,到站后有(9-2A)名乘客下车,问车上原有多少名乘客?
5a-4≥9-2a —— ①
9-2a>0 —— ②

由①得a≥13/7
由②得a<9/2
(5a-4)和(9-2a)都应该是正整数,所以a必须是整数。
满足13/7≤a<9/2的整数解为a1=2;a2=3;a3=4,所以车上原来有6、11或16个乘客。

38.校组织学生到距学校31千米的农村社会实践,上午行3小时,下午行4小时,且下午的平均速度比上午每小时慢1千米,求上、下午的平均速度各是多少
设上午速度是X,下午是Y

X-Y=1

3x+4y=31

解得:X=5,Y=4

即上午速度是5千米,下午是4千米

39.一游泳者逆水而上,在A处将一塑料空水壶丢失,前进50米到B处时,发现水壶丢失立即返回寻找,在C处找到,此人的游水速度是水流速度的1.5倍,问从丢失到找到水壶游了多少米?
设水壶漂流距离为x米,水流速度为v米/秒,则游泳者逆流游速度为1.5v-v=0.5v(米/秒),顺流游速度为1.5v+v=2.5v米/秒,根据题意(水壶漂流时间=此人游泳时间),得
50/0.5v+(50+x)/2.5v=x/v .
解这个方程,得x=200.
所以从丢失到找到水壶游了50×2+200=300米.

40.有甲,乙,丙三种文具,若购买甲2件,乙1件,丙3件共需23元;若购买甲1件,乙4件,丙5件共需36元,问购买甲1件,乙2件,丙3件共需多少元?
解:设购买甲需要x元,乙要y元,丙要z元,则
2x+y+3z=23
x+4y+5z=36
联立解得
y+z=7
x+z=8

现在要求x+2y+3z=x+z+2(y+z)=8+7*2=22元

所以购买甲1件,乙2件,丙3件共需22元
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
•( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分.
依题意,可列出方程
+ =
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.
1、 将若干只鸡放入若干个笼子里。若每个笼子里放4只鸡,则有1只鸡无笼可放;若每个笼子里放5只鸡,则空一笼无鸡可放。那么共有几只鸡?有几个笼子?
2、 有一个班的同学去划船。他们算了一下。如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。问这个班共有多少人?
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式