韦达定理
1个回答
展开全部
格瓦维达是法国杰出数学家,他年轻时是一名律师,后来出于爱好致力于数学。科学研究,他通过393416个边的多边形计算中。圆周率最早明确给出有关圆周率pi值的无穷运算是。 还有很多发现,但最重要的是发现了方程根与系数的关系,为了纪念这个伟大的发现,人们把叙述一元二次方程根与系数关系的结论称为伟达定理 。 好了,言归正传,那什么是伟达定理呢 ? 为了方便说明,我们用数学符号来表示 ,即对于一个一元二次方程,Ax方加BX加C等于0a不等于零,它的两根X1X2满足X1加X2等于负,A分之BXC乘X2等于a分之C。这也就是一元二次方程两根之和,X1加X22根之间,XD乘X2和系数ABC的关系。两根之间,XD乘X2和系数ABC的关系。当然,一元二次方程有根的条件必须满足判别式等。B方减CC大于当兵, 这也是伟达定理必须要满足的条件 , 那韦达定理存在的理论依据是什么呢 ? 很简单,求根公式都知道吧 ,即一元二次方程,Ax方加BX加C等于0a不等于零,两个根是X12等于2a分之负B加减高下,B方减C。那么两个之和就为X1加X2等于2X分之负B加根号下,B方减C,加上2F支付B减根号下,B方减C等于负的2/2B等于负的a分之B两根之积为X1乘X2等于2a分之负,B加根号下,B方减CC成二月份支付B减根号下,B方减C等于4a方分之B方减括号,B方减C等于4a方分之四ac等于a分之C。 知道了伟达定理的由来,那么伟达定理该怎么应用呢?我们这节课一起来探讨一下吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询