在三角形ABC中,求证:acos^2c/2 ccos^2a/2=1/2(a+b+c)
展开全部
2[acos^2 B/2+bcos^2 A/2]
=2[a(cosB+1)/2+b(cosA+1)/2]
=acosB+bcosA+a+b
=a*(a^2+c^2-b^2)/(2ac)+b(b^2+c^2-a^2)/(2bc)+(a+b)
=(a^2+c^2-b^2+b^2+c^2-a^2)/(2c)+(a+b)
=2c^2/(2c)+(a+b)
=a+b+c
即:
2[acos^2 B/2+bcos^2 A/2]=a+b+c
所以:
acos^2 B/2+bcos^2 A/2=1/2(a+b+c)
=2[a(cosB+1)/2+b(cosA+1)/2]
=acosB+bcosA+a+b
=a*(a^2+c^2-b^2)/(2ac)+b(b^2+c^2-a^2)/(2bc)+(a+b)
=(a^2+c^2-b^2+b^2+c^2-a^2)/(2c)+(a+b)
=2c^2/(2c)+(a+b)
=a+b+c
即:
2[acos^2 B/2+bcos^2 A/2]=a+b+c
所以:
acos^2 B/2+bcos^2 A/2=1/2(a+b+c)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询