用比值审敛法判定下列级数的敛散性

用比值审敛法∑(2^n)/n!∑上是无穷符号,下是n=1比值后的结果是lim(n/(n+1))^n,接下来怎么做?错了应该是∑(n-1)!/n^(n-1)... 用比值审敛法
∑(2^n)/n!
∑上是无穷符号,下是n=1
比值后的结果是lim(n/(n+1))^n,接下来怎么做?
错了应该是∑(n-1)!/n^(n-1)
展开
古棠闲人
2012-02-11 · 寻找、分享,剪辑时空。
古棠闲人
采纳数:313 获赞数:1762

向TA提问 私信TA
展开全部
对∑(2^n)/n!
则an=(2^n)/n!
因为a(n+1)/an=[(2^(n+1))/(n+1)!]/[(2^n)/n!]=2/(n+1)
所以lim[a(n+1)/an]=lim[(2^(n+1))/(n+1)!]/[(2^n)/n!]=lim[2/(n+1)]=0<1
由比值审敛法知∑(2^n)/n!收敛

lim(n/(n+1))^n=lim[1/(1+1/n)^n]=1/e<1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式