计算:(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
3个回答
展开全部
解:因为(2-1)=1
所以可以给原式乘上(2-1),原式的值不变
原式=(2-1)(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2²-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^16-1)(2^16+1)(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
所以可以给原式乘上(2-1),原式的值不变
原式=(2-1)(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2²-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^16-1)(2^16+1)(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
追问
那加上(3-2)不行吗?
追答
加(2-1)是为了能与(2+1)形成(a-b)(a+b)的形式,所以只能加(2-1)
展开全部
(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^4-1)(2^4+1)……(2^32+1)+1
=…
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^4-1)(2^4+1)……(2^32+1)+1
=…
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)……(2^32+1)+1
=……
=2^64
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)……(2^32+1)+1
=……
=2^64
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询