线性代数向量空间维数求解
1个回答
展开全部
向量空间的维数=向量组的秩。因向量Ⅹ3=X1+X2,X3由X1与Ⅹ2线性表出,所以线性无关向量只2个,向量组的秩r=2,向量空间的维数=2。
在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。
扩展资料:
向量空间亦称线性空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个域。若:
1、在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。
2、在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询