高中三角函数题
已知三角形ABC的周长为9,AC=3,4cos2A-cos2C=3(1)求AB的值(2)求sin(A-π/4)的值(求详解,要过程)...
已知三角形ABC的周长为9,AC=3,4cos2A-cos2C=3
(1)求AB的值(2)求sin(A-π/4)的值
(求详解,要过程) 展开
(1)求AB的值(2)求sin(A-π/4)的值
(求详解,要过程) 展开
2个回答
展开全部
1、4cos2A-cos2C=3
=4[1-2(sinA)^2]-[1-2(sinC)^2]
3-8(sinA)^2+2(sinC)^2=3
(sinC)^2-4(sinA)^2=0,
sinC=2sinA,(三角形内正弦无负号,故舍去负值),
sinC/sinA=2,根据下弦定理,sinC/sinA=c/a,
c/a=2,c=2a,2a+a+3=9,a=2,c=4,
AB=c=4,
2、根据余弦定理,
a^2=c^2+b^2-2bccosA,
cosA=7/8,
sinA=√(1-49/64)=√15/8,
sin(A-π/4)=sinAcos(π/4)-cosAsin(π/4)
=(√30-7√2)/16.
=4[1-2(sinA)^2]-[1-2(sinC)^2]
3-8(sinA)^2+2(sinC)^2=3
(sinC)^2-4(sinA)^2=0,
sinC=2sinA,(三角形内正弦无负号,故舍去负值),
sinC/sinA=2,根据下弦定理,sinC/sinA=c/a,
c/a=2,c=2a,2a+a+3=9,a=2,c=4,
AB=c=4,
2、根据余弦定理,
a^2=c^2+b^2-2bccosA,
cosA=7/8,
sinA=√(1-49/64)=√15/8,
sin(A-π/4)=sinAcos(π/4)-cosAsin(π/4)
=(√30-7√2)/16.
展开全部
1) 令AB=c, 则有:BC=9-c-3=6-c
4cos2A-cos2C=3
4(1-2sin^2 A)-(1-2sin^2 C)=3
4sin^2 A=sin^2 C
2sinA =sinC
又因:sinA/(6-c)=sinC/c
两式相除有:2(6-c)=c, 解得c=4
即AB=4
2)a=6-c=2
cosA=(3^2+4^2-2^2)/(2*3*4)=7/8
sinA=√(1-7^2/8^2)=√15/8
sin(A-π/4)=√2/2(sinA-cosA)=√2/16*(√15-7)
4cos2A-cos2C=3
4(1-2sin^2 A)-(1-2sin^2 C)=3
4sin^2 A=sin^2 C
2sinA =sinC
又因:sinA/(6-c)=sinC/c
两式相除有:2(6-c)=c, 解得c=4
即AB=4
2)a=6-c=2
cosA=(3^2+4^2-2^2)/(2*3*4)=7/8
sinA=√(1-7^2/8^2)=√15/8
sin(A-π/4)=√2/2(sinA-cosA)=√2/16*(√15-7)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询