定积分[0到x](t-1)(t-2)^2 dt,求指教
1个回答
展开全部
∫[0到x](t-1)(t-2)^2 dt
=∫[0到x](t-1)(t-1-1)^2 dt
=∫[0到x](t-1)^3-2(t-1)^2+(t-1) d(t-1)
=1/4(t-1)^4-2/3 (t-1)^3+1/2 (t-1)^2|(0,x)
=1/4(x-1)^4-2/3 (x-1)^3+1/2 (x-1)^2-(1/4+2/3+1/2)
=1/4(x-1)^4-2/3 (x-1)^3+1/2 (x-1)^2-17/12
=∫[0到x](t-1)(t-1-1)^2 dt
=∫[0到x](t-1)^3-2(t-1)^2+(t-1) d(t-1)
=1/4(t-1)^4-2/3 (t-1)^3+1/2 (t-1)^2|(0,x)
=1/4(x-1)^4-2/3 (x-1)^3+1/2 (x-1)^2-(1/4+2/3+1/2)
=1/4(x-1)^4-2/3 (x-1)^3+1/2 (x-1)^2-17/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询