已知函数f(X)的图像关于点(a,b)成中心对称,应怎么表示
1个回答
展开全部
f (x) + f (2a-x) = 2b
证明:
必要性
设点P(x ,y)是y = f (x)图像上任一点,
∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,
∴ 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,
必要性得证.
充分性
设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b
∴f (x0) + f (2a-x0) =2b,
即2b-y0 = f (2a-x0) .
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,
充分性得征.
证明:
必要性
设点P(x ,y)是y = f (x)图像上任一点,
∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,
∴ 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,
必要性得证.
充分性
设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b
∴f (x0) + f (2a-x0) =2b,
即2b-y0 = f (2a-x0) .
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,
充分性得征.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询