设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1b2b3b4 线性相关

 我来答
黑科技1718
2022-06-19 · TA获得超过5858个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.9万
展开全部
因为 b4=a4+a1=(a3+a4)+(a1+a2)-(a2+a3)=b1+b3-b2 ,
所以 b1-b2+b3-b4=0 ,
即存在不全为 0 的实数 k1=1,k2= -1,k3=1,k4= -1 使 k1*b1+k2*b2+k3*b3+k4*b4=0 ,
所以,b1、b2、b3、b4 线性相关.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式