老师,怎么证明齐次方程组Ax=0有n-r(A)个线性无关解向量啊?
1个回答
展开全部
这个写出来比较麻烦
你这么理解吧:
系数矩阵A有一个非零的 r(A) 阶子式
这个子式所在列对应的未知量是约束未知量, 其余未知量是自由未知量,有n-r(A)个
自由未知量任意取定一组数, 由Cramer 法则知可唯一确定约束未知量
那么让自由未知量分别取 (1,0,...,0), (0,1,...,0),(0,0,...,1) 即得一组线性无关的解向量 ( n-r(A)个)
--这是因为 线性无关的向量组 添加若干个分量仍线性无关
你这么理解吧:
系数矩阵A有一个非零的 r(A) 阶子式
这个子式所在列对应的未知量是约束未知量, 其余未知量是自由未知量,有n-r(A)个
自由未知量任意取定一组数, 由Cramer 法则知可唯一确定约束未知量
那么让自由未知量分别取 (1,0,...,0), (0,1,...,0),(0,0,...,1) 即得一组线性无关的解向量 ( n-r(A)个)
--这是因为 线性无关的向量组 添加若干个分量仍线性无关
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询