第二个重要极限是:n趋近于无穷大时,(1+1/n)的n次方的极限为e。
sinx/x 的极限,在中国国内的教学环境中,经常被歪解成 等价无穷小。而在国际的微积分教学中,依旧是中规中矩, 没有像国内这么疯狂炒作等价无穷小代换。 sinx 经过麦克劳林级数展开后,x 是最低价的无穷小,sinx跟 x 只有在比值时,当 x 趋向于 0 时,极限才是 1。用我们一贯的,并不是十分妥当的说法,是“以直代曲”。
这一特性在计算、推导其他极限公式、导数公式、积分公式时,会反反复复地用到。sinx、x、tanx 也给夹挤定理提供了最原始的实例,也给复变函数中 sinx/x 的定积分提供形象理解。