为什么介值定理要强调闭区间连续,而不是开区间连续?

 我来答
教育问题小助手
高能答主

2021-12-04 · 专注解决教育问题,提供解决方法与技巧
教育问题小助手
采纳数:33 获赞数:813

向TA提问 私信TA
展开全部

因为f(x)在x=a或x=b 处可能间断,所以介值可能取不到。

介值定理,又名中间值定理,是闭区间上连续函数性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值。

完整性

定理取决于,或者说等价于实数的完整性。介值定理不适用于有理数Q,因为有理数之间存在无理数。例如,函数 满足 。然而,不存在有理数x使得 ,因为 是一个无理数。

几何意义

在[a,b]上连续的曲线与。特别地,如果A与B异号,则连续曲线与x轴至少相交一次。“介值定理”是闭区间上连续函数的性质之一。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式