可积与存在原函数有什么不同,它们的条件各是什么?

 我来答
热爱电子数码
高能答主

2021-12-03 · 了解电子产品知识,分享数码相关资料。
热爱电子数码
采纳数:367 获赞数:28370

向TA提问 私信TA
展开全部

可积与存在原函数有计算方法和适用范围的区别。条件如下所示:

存在原函数,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。



注意事项:

原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若f(x))存在原函数,不能推出f(x)在[a,b]上连续。

由于初等函数在有定义的区间上都是连续的,故初等在其定义区间上都有原函数。需要注意的是初等函数的导数是一定是初等函数,初等函数的原函数不一定是初等函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式