周期函数,在一个周期上的定积分等于零,怎么会有这样的?

 我来答
小不点聊生活
高能答主

2021-12-04 · 小不点聊生活,领悟生活。
小不点聊生活
采纳数:148 获赞数:13513

向TA提问 私信TA
展开全部

具体回答如下:

f(x0)=f(x0+T),f(x0)不等于0。

即f(x0),f(x0+T)同号。

又定积分等于0。

区间内必有异于f(x0),f(x0+T)符号的值,有罗尔定理,必有两个或两个以上的根。

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期

定义

设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式