当x趋于0,cosx的极限存不存在?

 我来答
古月先生爱生活
2021-12-03 · TA获得超过1.1万个赞
知道小有建树答主
回答量:1366
采纳率:100%
帮助的人:29.3万
展开全部

存在,当x趋于0,cosx的极限等于1。这是个余弦函数,三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB,f(x)=cosx(x∈R)。

f(x)在点x0处极限存在的定义,存在定数A,对于任意ε大于0,存在δ大于0,当0<|x-x0|<δ时,有|f(x)-A|<ε。函数极限存在的充要条件,左右极限存在并且相等。不一定等于此点的函数值,只要左右极限相等就可以了!等于函数值的话说明在该点连续。

余弦定理亦称第二余弦定理。关于三角形边角关系的重要定理之一。该定理断言,三角形任一边的平方等于其他两边平方和减去这两边与它们夹角的余弦的积的两倍。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式