AI 换脸是什么原理?
1个回答
展开全部
AI换脸实际上是多项技术的一个结晶,它的基础是Cautoencoder自编码器,它主要用于图片的压缩和降噪等等,人脸识别算法最经典的搭配是基于LBP特征的Cascade Classifier。它从输入中提取特征,再根据特征把输入重新生成出来,以实现压缩和降噪等功能。
我们将抽象的特征称作code特征码,从输入提取特征码的过程称作encode编码,根据特征码得到输出的过程叫做decode解码,我们再把实现编码的结构称作encoder编码器,同理也有decoder解码器,它们的结构并不是一成不变的。
目前我们能看到的绝大多数换脸视频都是通过,faceswap和DeepFaceLab这两个项目制作的,它们的流程大同小异,DeepFaceLab是个开源项目。
第一步将视频逐帧保存成图片,每个视频各取两帧用于示意。
第二步人脸对齐,定位出人脸上的关键点,然后根据关键点将人脸转正,第三步人脸分割换脸时只换这一部分就可以了。
第四步训练换脸模型,用处理好的人脸图片训练换脸模型,它生成的就是我们想要的。
第五步合并,调整生成脸的肤色、光照和清晰度等,得到更自然的合并效果,再把处理好的图片拼接成最终的视频。
苏州千视通视觉科技股份有限公司_
2024-11-04 广告
2024-11-04 广告
千视通是国内第一梯队推出多模态AI大模型网关和边缘大模型一体机产品方案的领先AI企业。 拥有行业领先的多模态视觉语言大模型技术,践行“Make high-quality AI quickly”理念,平台基于多模态预训练,支持用户自定义算法可...
点击进入详情页
本回答由苏州千视通视觉科技股份有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询