为什么 xsin(1/x)趋于无穷等价于xsin(1/x)趋近于0?

 我来答
帐号已注销
2021-12-07 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

xsin(1/x)趋于无穷等价于xsin(1/x)趋近于0:因为如果x→∞,那么1/x趋近于0,sin(1/x)趋近于0,因此整体为0。

令t=1/x

则x=1/t

x→∞时,t→0

lim(x→∞)xsin(1/x)

=lim(t→0)(1/t)sint 

=1

无穷小量

数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现,无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式