1+x^2分之一的不定积分?
1个回答
展开全部
具体回答如下:
∫1/(1-x^2)dx
=1/2∫[1/(1-x)+1/(1+x)]dx
=1/2[-ln(1-x)+ln(1+x)]+C
=1/2ln[(1+x)/(1-x)]+C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
不定积分的意义:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x)。即对任何常数C,函数F(x)+C也是f(x)的原函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询