展开全部
由∠BMD=∠BMA+∠AMD=∠C+∠CDM,∠B=∠AMD=∠C=45°,可证得△ABM∽△MCD,然后由相似等于相似三角形对应边成比例,即可求得MC与BM的值,然后延长BA与CD交于点E,由勾股定理,即可求得AD的长.解答:解:∵∠BMD=∠BMA+∠AMD=∠C+∠CDM,
∵∠B=∠AMD=∠C=45°,
∴∠BMA=∠CDM,
∴△ABM∽△MCD,
∴ ,
∵M为BC边的中点,
∴MC=BM,
∵AB=8,CD=9,
∴BM=MC=6 ,
∴BC=12 ,
延长BA与CD交于点E,
∵∠B=∠C=45°,
∴∠E=90°,BE=CE,
∴BE=CE=12,
∴AE=BE-AB=4,DE=CE-CD=3,
在Rt△AED中,AD=5.
故选C.
∵∠B=∠AMD=∠C=45°,
∴∠BMA=∠CDM,
∴△ABM∽△MCD,
∴ ,
∵M为BC边的中点,
∴MC=BM,
∵AB=8,CD=9,
∴BM=MC=6 ,
∴BC=12 ,
延长BA与CD交于点E,
∵∠B=∠C=45°,
∴∠E=90°,BE=CE,
∴BE=CE=12,
∴AE=BE-AB=4,DE=CE-CD=3,
在Rt△AED中,AD=5.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询