交错级数都是条件收敛吗?

 我来答
帐号已注销
2021-12-13 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

交错级数都是条件收敛。

首先对级数的一般项变形,让除了-1的幂的部分是正数,先说明不是绝对收敛,也就是ln这个级数发散,既然是条件收敛,那么交换求和次序之后结果可以变成任何数(并且可以发散)。

按一种方式算出了一个期望,别人完全可以按另一种方式算出另一个期望,这样期望就不是客观的量了,而是和主观的选择有关,显然是不合理的,所以这样的情况下期望不存在。

交错级数

是正项和负项交替出现的级数,形式满足a1-a2+a3-a4+.......+(-1)^(n+1)an+......,或者-a1+a2-a3+a4-.......+(-1)^(n)an,其中an>0。在交错级数中,常用莱布尼茨判别法来判断级数的收敛性,即若交错级数各项的绝对值单调递减且极限是零,则该级数收敛;此外,由莱布尼茨判别法可得到交错级数的余项估计。最典型的交错级数是交错调和级数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式