运算律有哪些
长方形周长=(长+宽)×2 C=2(a+b)
正方形周长=边长×4 C=4a
圆的周长=圆周率×直径 C= πd C=2πr
半圆的周长=圆周长的一半+直径 C=πr+d
面积公式:
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形面积=底×高 S=ah
三角形面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底 h=s2÷a
三角形底=面积×2÷高 b=s2÷h
梯形面积=(上底+下底)×高÷2 S=(a+b)÷2
梯形的高=面积×2÷(上底+下底) h=s×2÷(+b)
梯形的(上底+下底)=面积×2÷高 (a+b)=s×2÷h
梯形的(上底+下底)=面积×2÷高-下底 a=s×2÷h-b
圆的面积=圆周率×半径的平方 S=πr2
圆柱的侧面积=底面周长×高 S=ch
表面积公式:
长方形表面积=(长宽+长高+宽高)2 S=(ab+ah+bh)×2
正方体表面积=边长×边长×6 S=6a2
圆柱体侧面积=底面周长×高 S=ch
圆柱体表面积=侧面积+底面积×2 S=s侧+2s底
体积公式:
长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a3
圆柱体体积=底面积×高 V=sh
(将近似长方体平方得到:
圆柱体体积=侧面积的一半×半径 V=ch÷2×r=2πr÷2×r
圆锥体体积=底面积×高÷3 V=sh÷3或1/3
关系式:
分数应用题:
单住“1”的量×分率(百分率)=对应量
已知量÷对应分率(百分率)=单位“1”的量
比较量÷单位“1”的量=分率(百分率)
工程问题:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
相遇问题:
速度和×相遇时间=路程
路程÷速度和=相遇时间
路程÷相遇时间=速度和
归一问题:
单一量×数量=总量
总量÷单一量=数量
总量÷数量=单一量
比例尺:
图上距离:实际距离=比例尺
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
平均数:
总数÷总份数=平均数
正比例关系:
y=k(一定) 反比例:xy=k(一定)
一般运算规则:
(1)加数+加数=和
(2)一个加数=和-另一个加数 和-一个加数=另一个加数
(3)被减数-减数=差
(4)减数=被减数-差
(5)被减数=减数+差
(6)因数×因数=积
(7)一个因数=积÷另一个因数
(8)被除数÷除数=商
(9)除数=被除数÷商
(10)被除数=商×除数
(11)有余数的除法:被除数=商×除数+余数
(12)每份数×份数=总数
(13)总数÷每份数=份数
(14)总数÷份数=每份数
(15)1倍数×倍数=几倍数
(16)几倍数÷1倍数=倍数
(17)几倍数÷倍数=1倍数
(18)速度×时间=路程
(19)路程÷时间=速度
(20)路程÷速度=时间
(21)单价×数量=总量
(22)总价÷单价=数量
(23)总价÷数量=单价
单 位 换 算
长度单位
1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
面积单位
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分=100平方厘米
1平方厘米=100平方毫米
体(溶)积单位
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位
1吨=1000 千克
1千克=1000克
1千克=1公斤
1公斤=2市斤
1斤=500克
人民币换直
1元=10角
1角=10分
1元=100分
时间换算
1世纪=100年
1年=12月
大月(31天)有1/3/5/7/8/10/12月
小月(30天)有4/6/9/11月
平年2月28天,润年2月29天
平均全年365天,润年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
数 学 定 义 、定 理
1、加法交换律:
两数相加交换加数的位置.和不变.
2、加法结合律:
三个数相加.先把前两个数相加.或先把后两个数相加,再同第三个数相加.和不变.
3、乘法交换律:
两数相乘,交换因数的位置.积不变.
4、乘法结合律
三个数相乘先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5、乘法分配律
两个数的和同一个数相乘,可以把两个加数分别同这处数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6、除法的性质
在除法里被除数和除数同时扩大(或缩小)相同的倍数.商不变.0除以任何不是0的数都得0.
7、等式
等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:
等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8、方程式
含的未知数的等式叫方程式
9、一元一次方程式
含有一个未知数.并且未数的次数是一次的等式叫做一元一次方程式.
10、分数
把单位”1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
11、分数的加、减法则
同分线母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分然后再加减。
12、分数大小的比较
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较。若分子相同,分母大的反而小。
13、分数乘整数
用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数
用分子相乘的积作分子,分母相乘的积作分母。
15分数除以整数(0除外)
等于分数乘以这个整数的倒数。
16、真分数
分子比分母小的数叫做真分数。
17、假分数
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于或等于1。
18、带分数
把假分数写成整数和真分数的形式叫做带分数。
19、分数的基本性质
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外)等于甲数乘以乙数的倒数。
数 量 关 系 计 算 公 式
1、比
两个数相除就叫做两个数的比
如:2÷5或3:6或1/3。比的前项和后项同时乘以或除以一个相同的数。(0除外)比值不变。
2、比例
(1)定义
表示两个比相等的式子叫做比例。
如:3:6=9:18
(2)基本性质
在比例里,两外项之积等于两内项之积。
(3)解比例
求比例中的未知项叫做解比例。
如:3:x=9:18
(4)正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的比值(也就是商K)一定。这两种量就叫做成正比的量,它们的关系就叫做正比例关系。
如:y/k=k(k一定) kx=y
(5)反比例
两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的积一定。这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:xy=k(k一定)或k/x=y
(6)百分数
表示一胩数或另一个数的百分之几的数叫做百分数,百分数也叫做百分率或百分比。
3、小数、分数、百分数
(1)把小数化成百分数,只要把小数点向后移动两位,同时后面添上百分号,其实,把小数化成百分数,只要把这个数乘以100%就行了。
(2)把分数化百分数,通常先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数,其实,把分数化成百分数,要先先把分数化成小数后,再乘以100%就行了。
(3)把分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(4)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、最大公约数
几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数,(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个叫做最大公约数)
5、互质数
公约数只有1的两个数,叫做互质数 。
6、最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
7、通分
把异分母分数的分别化成和原来分数相等的同分母的分数。叫做通分(通分用最小公位数)
8、约分
把一个分数化成同它相等,但分子、分母都比较小的分数叫做约分(约分用量大公位数)
9、最简分数
分子、分母是互质数的分数叫做最简分数
(1)分数计算到最后,得数必须成最简分数。
(2)个位上是0、2、4、6、8的数,都能被2整除。即能用2进行约分。
(3)个位上是0或5的数,都能被5整除,即能用5通分。
(4)每个数位上的数字的和是3的倍数。即能用3进行通分。
10、偶数和奇数
能被2整除的数叫偶数,不能被2整除的数叫奇数。
11、质数(素数)
一个数(如11),如果只有1和它本身(11)两个因数。这样的数就叫做质数(或素数)
12、合数
一个数(如12),如果除了1和它本身(12)外,还的别的因数,这样的数叫做合数,1不是质数,也不是合数。
13、利息
利息=本金利率时间(时间一般以或月为单位,应与利率的单位相对应)
14、利率
利息与本金的比值叫做利率,一年的利息与本金铁比值叫做年利率,一月的利息与本金的比值叫做月利率。
15、自然数
用来表示物体个数的整数,叫做自然数。也可分为质数和偶数。0也是自然数。
一个数的个位上是1、3、5、7或9,这个数是奇数。20以内的质数是2、3、5、7、9、11、13、17、19。
一个数个位上是0、2、4、6、或8,这个数是偶数。
16、循环小数
一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如:3.141414
17、不循环小数
一个小数,从小数部分起,没有一个数字或几个数字依次不断重复出现,这样的小数叫做不循小数。
如:3.141592654
18、无限不循环小数
一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断和重复出现,这样的小数叫做无限不循环小数.
如:3.141592654......
19、代数
就是用字母代替数.
20、代数式
用字母表示的式子中做代数式.
如:3x=ab+c
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数1+加数2=和 和-加数1=加数2 和-加数2=加数1
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数1×因数2=积 积÷因数1=因数2 积÷因数2=因数1
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 (C周长 S面积 a边长)
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 正方体(V体积 a棱长)
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 长方形(C周长 S面积 a边长)
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 长方体(V体积 S面积 a长 b宽 h高)
(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形(s面积 a底 h高)
面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底 三角形底=面积×2÷高
6 平行四边形(s面积 a底 h高)
面积=底×高 s=ah
7 梯形(s面积 a上底 b下底 h高)
面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形(S面积 C周长 π圆周率 d=直径 r=半径)
(1)周长=直径×π=2×π×半径 C=πd=2πr
(2)面积=半径×半径×π
9 圆柱体(v体积 h高 s底面积 r底面半径 c底面周长)
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体(v体积 h高 s底面积 r底面半径)
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
周长公式:
长方形周长=(长+宽)×2 C=2(a+b)
正方形周长=边长×4 C=4a
圆的周长=圆周率×直径 C= πd C=2πr
半圆的周长=圆周长的一半+直径 C=πr+d
面积公式:
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形面积=底×高 S=ah
三角形面积=底×高÷2 S=ah÷2
三角形高=面积×2÷底 h=s2÷a
三角形底=面积×2÷高 b=s2÷h
梯形面积=(上底+下底)×高÷2 S=(a+b)÷2
梯形的高=面积×2÷(上底+下底) h=s×2÷(+b)
梯形的(上底+下底)=面积×2÷高 (a+b)=s×2÷h
梯形的(上底+下底)=面积×2÷高-下底 a=s×2÷h-b
圆的面积=圆周率×半径的平方 S=πr2
圆柱的侧面积=底面周长×高 S=ch
表面积公式:
长方形表面积=(长宽+长高+宽高)2 S=(ab+ah+bh)×2
正方体表面积=边长×边长×6 S=6a2
圆柱体侧面积=底面周长×高 S=ch
圆柱体表面积=侧面积+底面积×2 S=s侧+2s底
体积公式:
长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a3
圆柱体体积=底面积×高 V=sh
(将近似长方体平方得到:
圆柱体体积=侧面积的一半×半径 V=ch÷2×r=2πr÷2×r
圆锥体体积=底面积×高÷3 V=sh÷3或1/3
关系式:
分数应用题:
单住“1”的量×分率(百分率)=对应量
已知量÷对应分率(百分率)=单位“1”的量
比较量÷单位“1”的量=分率(百分率)
工程问题:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
相遇问题:
速度和×相遇时间=路程
路程÷速度和=相遇时间
路程÷相遇时间=速度和
实数和纯虚数的积等于纯虚数。实数和实数的和等于实数,纯虚数和纯虚数的和等于纯虚数,实数加纯虚数等于复数。
交换律
交换律是被普遍使用的一个数学名词,意指能改变某物的顺序而不改变其最终结果。交换律是大多数数学分支中的基本性质,而且许多的数学证明需要依靠交换律。简单运算的交换律许久都被假定存在,且没有给定其一特定的名称,直到19世纪,数学家开始形式化数学理论
给定集合S上的二元计算,如果对S中的任意a,b满足
a+b = b+a
则称·满足交换律。
例:
1.在四则运算中,加法和乘法都满足交换律。在小学课本中的表述如下:
加法交换律:两个数相加,交换加数的位置,它们的和不变.a+b=b+a
乘法交换律:两个数相乘,交换因数的位置,它们的积不变.axb=bxa
2.在集合运算中,集合的交,并,对称差等运算都满足交换律。
结合律
给定一个集合S上的二元运算·,如果对于S中的任意a,b,c。有:
加法:a+b+c=(a+b)+c=a+(b+c)
乘法:ax(bxc) = (axb)xc
则称运算·满足结合律。
例:
1.在常见的四则运算中:加法和乘法都满足结合律。在小学课本中表述如下:
加法结合律:三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变。即表示为:(a+b)+c=a+(b+c);
乘法结合律:三个数相乘,先把前面两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。即表示为:(axb)xc=ax(bxc);
2.在集合运算中:集合的交,并运算都满足结合律;
3.矩阵乘法满足结合律。一个A x B的矩阵乘以一个B x C的矩阵将得到一个A x C的矩阵,时间复杂度为A x B x C。
分配律
【定义】给定集合S上的两个二元运算x和+,若它们满足:对任意S中的a,b,c有
cx(a+b) = (cxa)+(cxb) 则称运算x对运算+满足左分配律。
(a+b)xc = (axc)+(bxc) 则称运算x对运算+满足右分配律。
如果同时满足上面两条,则称运算·对运算*满足分配律。
【示例】
1.在常见的四则运算中:
1)乘法对加法和减法都满足分配律(即同时满足左右分配律)。
在小学课本里这个性质被表述为:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。
2)除法对加法和减法满足右分配律。(这个事实很少被提到,但的确是对的)
2.在集合运算中:
1)交运算对并运算满足分配律;
2)并运算对交运算满足分配律;
3)交运算对差运算满足分配律;
4)并运算对差运算满足分配律;等等...
公式导引:
加法交换律:a+b=b+a
乘法交换律:a×b=b×a
加法结合律:a+b+c=(a+b)+c=a+(b+c)
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b+c)=a×b+a×c
左分配律:cx(a+b) = (cxa)+(cxb)
右分配律:(a+b)xc = (axc)+(bxc)
加法交换律,加法结合律,
乘法交换律,乘法分配律,乘法结合律。