证明:等腰三角形中,底边上的高线、中线、顶角的平分线重合.

 我来答
吃吃喝莫吃亏9728
2022-05-26 · TA获得超过856个赞
知道小有建树答主
回答量:314
采纳率:92%
帮助的人:63.3万
展开全部

1、已知△ABC中,AB=AC,AD是BC边上的高.求证:BD=CD,∠BAD=∠CAD.
证明:因为AD是高,所以∠ADB=∠ADC=90度,
因为AB=AC,AD=AD,
所以直角△ABD全等直角△ACD(HL)
所以BD=CD,∠BAD=∠CAD.

2、已知△ABC中,AB=AC,AD是BC边的中线,求证:AD⊥BC,∠BAD=∠CAD.
证明:因为AB=AC,AD=AD,BD=CD,
所以△ABD≌△ACD,
所以∠ADB=∠ADC,∠BAD=∠CAD.
因为∠ADB+∠ADC=180度,
所以∠ADB=90度,即有AD⊥BC.

3、已知△ABC中,AB=AC,AD平分∠BAC,求证:AD⊥BC,BD=CD.
证明:因为AB=AC,∠BAD=∠CAD,AD=AD,
所以△ABD≌△ACD,
所以∠ADB=∠ADC,BD=CD,
因为∠ADB+∠ADC=180度,
所以∠ADB=90度,即有AD⊥BC.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式