求与圆x2+y2-2x=0外切且和直线x+√3y=0相切于p(3,-√3)的圆的方程

毛道道家的说
2012-02-12 · TA获得超过10.7万个赞
知道大有可为答主
回答量:5563
采纳率:66%
帮助的人:2479万
展开全部
解:设(x-a)2+(y-b)2=r2,
将x2+y2-2x=0化为:(x-1)2+y2=1,
则圆心(1,0),半径R=1;
∵圆与圆x2+y2-2x=0相外切,
∴√ (a-1)2+b2=r+1 ①
∵直线L:x+ √3y=0相切于点(3,-√ 3),
∴(3-a)2+ (-√3-b)2=r2②
|a+√3b|/√1+3=r ③
联立①②③,
a=4,b=0,r=2,
(x-4)2+y2=4.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式