在三角形ABC中,若sinA=2sinBcosC,且sin^2A=sin^2B+sin^2C试判断三角形的 形状
展开全部
sin^2A=sin^2B+sin^2C
由正弦定理
即得到 a^2=b^2+c^2
所以为直角三角形
所以A=90
由于sinA=2sinBcosC
1=2sin^2B
所以B=45
所以为等腰直角三角形
由正弦定理
即得到 a^2=b^2+c^2
所以为直角三角形
所以A=90
由于sinA=2sinBcosC
1=2sin^2B
所以B=45
所以为等腰直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询