高一数学求解(必修五)!!!!
在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,c=根号二,cosC=四分之三(1)求sin(A+B)的值(2)求sinA的值(3)求向量CB乘向量CA的值...
在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,c=根号二,cosC=四分之三
(1)求sin(A+B)的值
(2)求sinA的值
(3)求向量CB乘向量CA的值 展开
(1)求sin(A+B)的值
(2)求sinA的值
(3)求向量CB乘向量CA的值 展开
2个回答
展开全部
1.sin(A+B)=sin(派-C)=sinC,又因为cosC=四分之三,cosC方+sinC方=1,所以sinC=四分之根号七,所以sin(A+B)的值为四分之根号七
2.因为cosC=a方+b方-c方/2ab,又因为a=1,c=根号二,cosC=四分之三 ,可求b=2,所以根据cosA=b方+c方-a方/2bc,所以cosA=八分之五倍根号二,因为cosA方+sinA方=1,所以sinA的值
为八分之根号十四
3.向量CB乘向量CA=a乘b乘cosC=1乘2乘3/4=3/2
2.因为cosC=a方+b方-c方/2ab,又因为a=1,c=根号二,cosC=四分之三 ,可求b=2,所以根据cosA=b方+c方-a方/2bc,所以cosA=八分之五倍根号二,因为cosA方+sinA方=1,所以sinA的值
为八分之根号十四
3.向量CB乘向量CA=a乘b乘cosC=1乘2乘3/4=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询