双曲线上一点到两焦点的距离公式?
展开全部
双曲线上一点到两焦点的距离公式:设点为M点,M点在左支上 :MF1=ex+a(x为M点横坐标);MF2=ex-a。 M点在右支上:MF1=-(ex+a);MF2=-(ex-a). e为离心率。
一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[2] )的点的轨迹称为双曲线。定点叫双曲线的焦点。
分支
可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。
双曲线焦点
在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c²=a²+b²。
双曲线准线
在定义2中提到的给定直线称为该双曲线的准线。
顶点
双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。
双曲线实轴
两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。
双曲线虚轴
在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴.
双曲线渐近线
双曲线有两条渐近线。渐近线和双曲线不相交。
一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[2] )的点的轨迹称为双曲线。定点叫双曲线的焦点。
分支
可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。
双曲线焦点
在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c²=a²+b²。
双曲线准线
在定义2中提到的给定直线称为该双曲线的准线。
顶点
双曲线和它的对称轴有两个交点,它们叫做双曲线的顶点。
双曲线实轴
两顶点之间的距离称为双曲线的实轴,实轴长的一半称为实半轴。
双曲线虚轴
在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴.
双曲线渐近线
双曲线有两条渐近线。渐近线和双曲线不相交。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询