F1和F2分别为双曲线xx/aa-yy/bb=1 (a,b>0)的左右焦点 P为左支上任意点,若|PF2|^2/|PF1|的最小值为8a,

离心率范围为多少?答案已经知道了,由焦半径公式可得(ex0+a)^2=8a(ex0-a)(ex0-3a)^2=0exo=3ax0=3a/e>=a请问为什么3a/e>=a?... 离心率范围为多少?
答案已经知道了,由焦半径公式可得
(ex0+a)^2=8a(ex0-a)
(ex0-3a)^2=0
exo=3a
x0=3a/e>=a 请问为什么3a/e>=a?
展开
暖眸敏1V
2012-02-13 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9861万
展开全部
你给的答案就有问题:
设 P(x0,y0)为左支上任意点, x0≤-a
|PF2|=a-ex0,|PF1}=-a-ex0
∵|PF2|^2/|PF1|的最小值为8a,
∴|PF2|^2/|PF1|≥8a
∴(a-ex0)^2≥8a(-ex0-a)
(ex0+3a)^2≥0
等号必须能成立,
则 ex0+3a=0能成立
-x0=3a/e能成立
(需3a/e在变量-x0的变化范围内)
∵x0≤-a ∴-x0≥a
∴3a/e≥a

下面是我的另一种解法:
记|PF1|=n,|PF2|=m
|PF2|^2/|PF1|=m^2/n=(n+2a)^2/n
=(n^2+4an+4a^2)/n
=n+4a^2/n+4a≥2√(4a^2)+4a=8a
当且仅当n=4a^2/n,n^2=4a^2,
n=2a时取等号
|PF1|2/|PF2|的最小值为8a
则n=2a能够成立
【常数2a在n=|PF1|的范围内,
才有机会相等,|PF1|∈[c-a,+∞)】
∵n≥c-a ∴2a≥c-a,3a≥c
e=c/a≤3,又e>1
∴1<e≤3
nmgyahu
2012-02-13
知道答主
回答量:15
采纳率:0%
帮助的人:2.4万
展开全部
白癜风给你发南方的那份对你放电脑趺
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式