三角函数的增减区间
1个回答
展开全部
1、正弦函数y=sinx
增区间:[-π/2+2kπ,π/2+2kπ](k∈Z)
减区间:[π/2+2kπ,3π/2+2kπ](k∈Z)
2、余弦函数y=cosx
增区间:[-π+2kπ,2kπ](k∈Z)
减区间:[2kπ,π+2kπ](k∈Z)
3、正切函数y=tanx
增区间:[-π/2+kπ,π/2+kπ](k∈Z)
y=tanx无减区间。
扩展资料
三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数(Trigonometric)也是常用的工具。
它有六种基本函数:正弦函数,余弦函数,正切函数,余切函数,正割函数和余割函数。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询