斜抛运动曲率半径的求解方法

 我来答
新科技17
2022-08-07 · TA获得超过5904个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.9万
展开全部
斜抛运动有斜向上抛、斜向下抛,以下为斜向上抛来说问题.
对于斜向上抛运动,上升阶段的轨迹与下落阶段的轨迹是对称的,所以只对上升阶段来说求曲率半径的方法.
  设抛出时的初速大小是V0,它与水平方向成θ角,对于给定的斜抛运动,V0和θ是确定的常量.
将初速V0正交分解在水平和竖直方向,水平分速度是 V0x=V0*cosθ ,V0x是常量.
竖直分速度是 V0y=V0*sinθ ,V0y是常量.
以下推导过程中,只用V0x和V0y表示.
抛出时间为 t 时,水平分速度是 Vx=V0x
竖直分速度是 Vy=V0y-g*t  (上升阶段,Vy>0)
合速度大小是 V=根号(Vx^2+Vy^2)=根号[ V0x^2+(V0y-g*t)^2 ]
合速度与水平方向夹角设为Ф ,则 tanФ=Vy / Vx=(V0y-g*t)/ V0x
合速度方向就是该处轨迹的切线方向,与切线垂直的就是法线,
显然,法线与水平方向夹角是 A=90度-Ф 
物体在空中只受重力作用,重力在此时分解在切向和法向,那么沿法向的分量就是法向合力(“向心力”),得 F法=F向=mg*sin(90度-Ф)
由“向心力”公式得 F法=F向=m*V^2 / R 
上式中的 R 就是所要求的物体所在处的曲率半径!
  mg*sin(90度-Ф)=m*V^2 / R
  mg*sin(90度-Ф)=m*[ V0x^2+(V0y-g*t)^2 ] / R
所求的曲率半径是 R=[ V0x^2+(V0y-g*t)^2 ] / [ g*sin(90度-Ф)]
=[ V0x^2+(V0y-g*t)^2 ] / ( g*cosФ)
因 1/cosФ=根号[1+(tanФ)^2]=根号{ 1+[(V0y-g*t)/ V0x]^2 }
  所以 R=[ V0x^2+(V0y-g*t)^2 ] *根号{ 1+[(V0y-g*t)/ V0x]^2 } / g
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式