三角函数sinα怎么算?

 我来答
强哥游戏辣评
2022-12-05 · TA获得超过1万个赞
强哥游戏辣评
采纳数:57 获赞数:10672

向TA提问 私信TA
展开全部

e^(iα)=cosα+isinα; e^(-iα)=cosα-isinα;cosα=1/2[e^(iα)+e^(-iα)];sinα=-i/2[e^(iα)-e^(-iα)]。

三角函数与欧拉

三角学是以三角形的边角关系为基础,研究几何图形中的数量关系及其在测量方面的应用的数学分支。“三角学”一词的英文“trigonometry ”就是由两个希腊词“三角形”和“测量”合成的。现在,三角学主要研究三角函数的性质及其应用。

1463年,法国学者缪勒在《论三角》中系统总结了前人对三角的研究成果。17世纪中叶,三角由瑞士人邓玉函(Jean Terrenz 1576-1630)传入中国。在邓玉函的著作《大测》二卷中,主要论述了三角函数的性质及三角函数表的制作和用法。当时,三角函数是用左图中的八条线段的长来定义的,这已与我们刚学过的三角函数线十分类似。    

著名数学家、物理学家和天文学家欧拉(Léonard Euler)1707年出生于瑞士的巴塞尔,1720年进入巴塞尔大学学习,后获硕士学们。1727年起,他先后到俄国、德国工作,1766年再次到俄国直至逝世。

1748年,欧拉出版了一部划时代的著作《无穷小分析概论》,其中提出三角函数是对应的三角函数线与圆的半径的比值,并令圆的半径为1,这使得对三角函数的研究大为简化,他还在此书的第八章中提出了弧度制的思想。

他认为,如果把半径作为1个单位长度,那么半圆的长就是Π,所对圆心角的正弦是0,即sin Π=0,同理,圆的1/4的长是Π/2,所对圆心角的正弦是1,可记作sin Π/2=1。这一思想将线段与弧的度量单位统一起来,大大简化了某些三角公式及其计算。

18世纪中叶,欧拉给出了三角函数的现代理论,他还成功地把三角函数的概念由褛范围推广到复数范围。

值得指出,1735年,欧拉右眼失明,《无穷小分析概论》这部著作出自版于他这一不幸之后。他的著作,在样式、范围和记号方面堪称典范,因此被许多大学作为教科书采用。

1766年,他回到俄国不入,又转成双目失明,他以惊人的毅力,在圣彼得堡又用口述由别人记录的方式工作了近17年,直到1783年去世。1909年,瑞士自然科学学会开始出版欧拉全集,使他卷帙浩繁的著作得以流芳百世,至今已出版七十余卷。

欧拉公式的发现过程

早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。但在当时这个规律并未广泛流传。

过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。

欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?

欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。

事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。

欧拉是一位不折不扣的数学天才。但是他的非凡成就也和他对数学的热爱有关。在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。

wxsunhao

2023-01-17 · 知道合伙人教育行家
wxsunhao
知道合伙人教育行家
采纳数:20073 获赞数:77227
国家级安全专家 省安全专家、职业健康专家 常州市安委会专家 质量、环境、职业健康安全审核员 教授级高级工

向TA提问 私信TA
展开全部

三角函数sinα定义为对边与斜边的比例。普通的三角函数值无法表达为代数式,一般都是通过级数的办法计算出来的。

正弦(sine),数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

古代说法,正弦是股与弦的比例。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式