如何判断一个函数的二阶导数大于0小于0

 我来答
帐号已注销
2022-12-30 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

二阶导数是一阶导数的导数,二阶导数大于零,就说明了一阶导数是单调递增的。

二阶导就是把第二个式子当作原始公式,再进行求导,大于0,说明这个函数是单调增的,取它的边界值,最小为0,则说明第二个式子是大于0的,这要就证明了第一个式子是单调递增的。所以后见到求单调性时,当一次求导判断不出来时,要二次求导,并取界值比较是否大于0。

求导法

利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是严格增函数,导函数值小于0,说明是严格减函数,前提是原函数必须是连续的。当导数大于等于0时也可为增函数,同理当导数小于等于0时也可为减函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式