在三个点上怎样求三角形的面积?

 我来答
杨叔说娱乐
2022-08-13 · 专注娱乐点评,分享娱乐。
杨叔说娱乐
采纳数:646 获赞数:567515

向TA提问 私信TA
展开全部

当三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)时,三角形面积为,

S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。

解:设三个点A、B、C的坐标分别为A(x1,y1)、B(x2,y2)、C(x3、y3)。

那么A、B、C三点可围成一个三角形。AC与AB边的夹角为∠A。

那么向量AB=(x2-x1,y2-y1)、向量AC=(x3-x1,y3-y1)。

令向量AB=a,向量AC=b,

则根据向量运算法则可得,

|a·b|=|a|·|b|·|cosA|,

那么cosA=|a·b|/(|a|·|b|),则sinA=√((|a|·|b|)^2-(|a·b|)^2)/(|a|·|b|)。

那么三角形的面积S=|a|·|b|·sinA=√((|a|·|b|)^2-(|a·b|)^2)

又a·b=(x2-x1)*(x3-x1)+(y2-y1)*(y3-y1),

那么可得三角形的面积S=(x1y2-x1y3+x2y3-x2y1+x3y1-x2y2)。

三角形的计算

1、已知三角形两边为a,b,且两边夹角为C,则三角形面积为两边之积乘以夹角的正弦值,即S=(absinC)/2。

2、设三角形三边分别为a,b,c,内切圆半径为r,则三角形面积S=(a+b+c)r/2。

3、设三角形三边分别为a,b,c,外接圆半径为R,则三角形面积为abc/4R。 

4、在直角三角形ABC中(AB垂直于BC),三角形面积等于两直角边乘积的一半,即:S=AB×BC/2。

5、(海伦公式)设三角形三边分别为a,b,c,三角形的面积则为:其中,p为三角形半周长,即p=(a+b+c)/2。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式