
用公式∫(0.π)xf(sinx)dx=π/2∫(0.π)f(sinx)dx计算:∫(0,π)(xsinx)/[1+(cosx)^2]dx
2个回答
展开全部
∫[0,π] (x sinx)/(1 + cos²x) dx
= ∫[0,π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)
= ∫[0,π] x f(sinx) dx
= (π/2)∫[0,π] f(sinx) dx
= (π/2)∫[0,π] sinx/(2 - sin²x) dx
= -(π/2)∫[0,π] 1/(1 + cos²x) d(cosx)
= -(π/2)arctan(cosx)_[0,π]
= -(π/2)[arctan(-1) - arctan(1)]
= -(π/2)(-π/4 - π/4)
= π²/4
之前应该还有个问题,证明这类型的积分适用于这条公式的。
= ∫[0,π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)
= ∫[0,π] x f(sinx) dx
= (π/2)∫[0,π] f(sinx) dx
= (π/2)∫[0,π] sinx/(2 - sin²x) dx
= -(π/2)∫[0,π] 1/(1 + cos²x) d(cosx)
= -(π/2)arctan(cosx)_[0,π]
= -(π/2)[arctan(-1) - arctan(1)]
= -(π/2)(-π/4 - π/4)
= π²/4
之前应该还有个问题,证明这类型的积分适用于这条公式的。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-02-13
展开全部
确的常
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询