用公式∫(0.π)xf(sinx)dx=π/2∫(0.π)f(sinx)dx计算:∫(0,π)(xsinx)/[1+(cosx)^2]dx

(0,π)中,0是下限,π是上限,答案是(π^2)/4,求详解... (0,π)中,0是下限,π是上限,答案是(π^2)/4,求详解 展开
梦盐瓷冥BB
高粉答主

2012-02-13 · 每个回答都超有意思的
梦盐瓷冥BB
采纳数:21378 获赞数:134688

向TA提问 私信TA
展开全部
∫[0,π] (x sinx)/(1 + cos²x) dx
= ∫[0,π] (x sinx)/(2 - sin²x) dx,设f(x) = x/(2 - x²),则f(sinx) = sinx/(2 - sin²x)
= ∫[0,π] x f(sinx) dx
= (π/2)∫[0,π] f(sinx) dx
= (π/2)∫[0,π] sinx/(2 - sin²x) dx
= -(π/2)∫[0,π] 1/(1 + cos²x) d(cosx)
= -(π/2)arctan(cosx)_[0,π]
= -(π/2)[arctan(-1) - arctan(1)]
= -(π/2)(-π/4 - π/4)
= π²/4
之前应该还有个问题,证明这类型的积分适用于这条公式的。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-02-13
展开全部
确的常
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式