设A、B均为n阶可逆矩阵,证明(A*)*= |A|^n-2·A
1个回答
展开全部
因为A、B均为n阶可逆矩阵
所以(A*)*= (|A|A^(-1))*= |A|^n-2 (A^(-1))*= |A|^n-1(A*)^(-1)
=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A/ |A|=|A|^n-2·A
所以(A*)*= (|A|A^(-1))*= |A|^n-2 (A^(-1))*= |A|^n-1(A*)^(-1)
=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A/ |A|=|A|^n-2·A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
根据绝缘子的数量和类型,可以大致判断电压等级。具体而言,可以从以下几个方面入手:1. 绝缘子的长度或数量:不同电压等级的绝缘子,其长度或数量也不同。例如,0.4千伏采用的悬式绝缘子为1片,10千伏为2片,35千伏为3~4片,110千伏为7片...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询