高阶无穷小和低阶无穷小有什么区别?

 我来答
小采姐姐
高能答主

2022-10-21 · 探索社会,乐得其所!
小采姐姐
采纳数:3683 获赞数:136138

向TA提问 私信TA
展开全部

1、高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。

2、低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大

3、高阶无穷小而不叫叫低阶无穷小的原因:β是比α较同阶的无穷小,即β→0与α→0是同样程度;若lim(β/α)=1,就说β是比α较等阶的无穷小,记作α∽β。

性质分析

在非标准分析中,无穷小量也和实数一样被视为具体的“数”,这些数比零大,但比任何正实数都小。前面用序列来定义无穷小量的经典方法或多或少有些难于处理,而“非标准”的无穷小量。

自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如 在 时是无穷小量,而不能笼统说 是无穷小量。也不能说无穷小是 , 是指负无穷大。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式