导数和微分的区别是什么?
函数在某点处的微分是:【微分 = 导数 乘以 dx】,也就是,dy = f'(x) dx。
不过,我们的微积分教材上,经常出现
dy = f'(x) Δx 这种乱七八糟的写法,更会有一大段利令智昏的解释。
Δx 差值,是增值,是增量,是有限的值,是有限的小,但不是无穷小;f'(x) Δx 因此也就是有限的小,但不是无穷小。
dx 是无穷小,是无穷小的差值,是无穷小的增值。
只有当 Δx 趋向于 0 时,写成 dx,导数的定义就是如此!
由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
扩展资料:
把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
如果函数f在一点x_0的雅克比矩阵的每一个元素\frac{\partial f_i}{\partial x_j}(x_0)都在x_0连续,那么函数在这点处可微,但反之不真。
参考资料来源:百度百科——微分
2024-04-02 广告