兴奋性突触后电位的形成机制【兴奋性突触后电位】
1个回答
展开全部
1、 神经肌肉接头结构由(突触前膜), (突触后膜), (突触间隙)三部分组组成。
2、 神经递质贮存于:
A、 突触囊泡; B、突触小体; C、突触前膜; D、突触后膜。
3、 突触前抑制的结构基础是:
A、 轴突-轴突型突触; B、轴突-树突型突触; C、轴突-胞体型突触; D、胞体-胞体型突触。
4、 简述什么是EPSP和IPSP
EPSP 称兴奋性突触后电位
突触前轴突末梢的AP 内流 递质与突触后Na+(主) K+通透性↑K+外流 去极化(EPSP)
IPSP 抑制性突触后电位
突触前轴突末梢的 Ca2+突触囊泡中抑制性递质释放 递质与突触后膜受体结合突触后膜离子通道开放 主要) K+ Cl-内流、 K+超极化(IPSP)
突出前神经元突触末梢兴奋,释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高了膜对K+、Cl-,尤其是Cl-的通透性,使突触后膜的膜电位增大,突触后膜出现超极化。由于这种超极化电位使突触后神经元膜电位远离阈电位值,突触后神经元不易发生兴奋,表现为突触后神经元活动的抑制,因此将这种局部电位称为抑制性突触后电位(IPSP)。
或者:
EPSP 称兴奋性突触后电位
突触前膜兴奋并释放兴奋性化学递质,与突触后膜受体结合后,提高突触后膜对Na+ 、K+、Cl-,特别是对Na+的通透性,使膜电位极化状态减小膜局部除极化。由于此除极化能兴奋突触,突触后神经元容易发生兴奋,表现为突触后神经元活动的加强,因此称这种局部电位为兴奋性突触后电位(EPSP)。
IPSP 抑制性突触后电位
突出前神经元突触末梢兴奋,释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高了膜对K+、Cl-,尤其是Cl-的通透性,使突触后膜的膜电位增大,突触后膜出现超极化。由于这种超极化电位使突触后神经元膜电位远离阈电位值,突触后神经元不易发生兴奋,表现为突触后神经元活动的抑制,因此将这种局部电位称为抑制性突触后电位(IPSP)。
2、 神经递质贮存于:
A、 突触囊泡; B、突触小体; C、突触前膜; D、突触后膜。
3、 突触前抑制的结构基础是:
A、 轴突-轴突型突触; B、轴突-树突型突触; C、轴突-胞体型突触; D、胞体-胞体型突触。
4、 简述什么是EPSP和IPSP
EPSP 称兴奋性突触后电位
突触前轴突末梢的AP 内流 递质与突触后Na+(主) K+通透性↑K+外流 去极化(EPSP)
IPSP 抑制性突触后电位
突触前轴突末梢的 Ca2+突触囊泡中抑制性递质释放 递质与突触后膜受体结合突触后膜离子通道开放 主要) K+ Cl-内流、 K+超极化(IPSP)
突出前神经元突触末梢兴奋,释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高了膜对K+、Cl-,尤其是Cl-的通透性,使突触后膜的膜电位增大,突触后膜出现超极化。由于这种超极化电位使突触后神经元膜电位远离阈电位值,突触后神经元不易发生兴奋,表现为突触后神经元活动的抑制,因此将这种局部电位称为抑制性突触后电位(IPSP)。
或者:
EPSP 称兴奋性突触后电位
突触前膜兴奋并释放兴奋性化学递质,与突触后膜受体结合后,提高突触后膜对Na+ 、K+、Cl-,特别是对Na+的通透性,使膜电位极化状态减小膜局部除极化。由于此除极化能兴奋突触,突触后神经元容易发生兴奋,表现为突触后神经元活动的加强,因此称这种局部电位为兴奋性突触后电位(EPSP)。
IPSP 抑制性突触后电位
突出前神经元突触末梢兴奋,释放到突触间隙中的是抑制性递质。此递质与突触后膜特异性受体结合,使离子通道开放,提高了膜对K+、Cl-,尤其是Cl-的通透性,使突触后膜的膜电位增大,突触后膜出现超极化。由于这种超极化电位使突触后神经元膜电位远离阈电位值,突触后神经元不易发生兴奋,表现为突触后神经元活动的抑制,因此将这种局部电位称为抑制性突触后电位(IPSP)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
GamryRaman
2023-06-12 广告
2023-06-12 广告
恒电位仪测量极化曲线的原理是通过测量电极在不同电位下的电流变化,来确定电极的极化程度和电位值。具体来说,恒电位仪会将电极依次恒定在不同的数值上,然后通过测量对应于各电位下的电流来计算电极的极化程度和电位值。在测量过程中,为了尽可能接近体系的...
点击进入详情页
本回答由GamryRaman提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询