高等数学等价无穷小的几个常用公式

一叹t
高能答主

2021-01-05 · 我们不创作,我们只是信息的搬运工。
一叹t
采纳数:2139 获赞数:11985

向TA提问 私信TA
展开全部

当x趋近于0的时候有以下几个常用的等价无穷小的公式:

1、sinx~x、tanx~x、arcsinx~x、arctanx~x、1-cosx~(1/2)*(x^2)~secx-1

2、(a^x)-1~x*lna [a^x-1)/x~lna]

3、(e^x)-1~x、ln(1+x)~x

4、(1+Bx)^a-1~aBx、[(1+x)^1/n]-1~(1/n)*x、loga(1+x)~x/lna、(1+x)^a-1~ax(a≠0)。

扩展资料:

两个重要极限:

1、

2、

(其中e=2.7182818 是一个无理数,也就是自然对数的底数)。

无穷小的性质:

1、无穷小量不是一个数,它是一个变量。

2、零可以作为无穷小量的唯一一个常量

3、无穷小量与自变量的趋势相关。

4、有限个无穷小量之和仍是无穷小量。

5、有限个无穷小量之积仍是无穷小量。

6、有界函数与无穷小量之积为无穷小量。

7、特别地,常数和无穷小量的乘积也为无穷小量。

8、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

无穷小比阶:

高低阶无穷小量:lim(x趋近于x0)f(x)/g(x)=0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。

同阶无穷小量:lim(x趋近于x0)f(x)/g(x)=c(c不等于0),ƒ和ɡ为x趋近于x0时的同阶无穷小量。

等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称ƒ和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。

参考资料来源:百度百科-无穷小量

帐号已注销
2021-01-05 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

当x→0时

sinx~x

tanx~x

arcsinx~x

arctanx~x

1-cosx~(1/2)*(x^2)~secx-1

(a^x)-1~x*lna ((a^x-1)/x~lna)

(e^x)-1~x

ln(1+x)~x

(1+Bx)^a-1~aBx

[(1+x)^1/n]-1~(1/n)*x

loga(1+x)~x/lna

(1+x)^a-1~ax(a≠0)

等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

扩展资料:

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:

被代换的量,在取极限的时候极限值为0;

被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

参考资料来源:百度百科-等价无穷小

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友9a26d41ee
推荐于2017-10-12 · TA获得超过1323个赞
知道小有建树答主
回答量:233
采纳率:0%
帮助的人:208万
展开全部
当x→0时,  
 sinx~x  
 tanx~x  
 arcsinx~x   
arctanx~x   
1-cosx~(1/2)*(x^2)~ secx-1  
(a^x)-1~x*lna ((a^x-1)/x~lna)   
(e^x)-1~x  
 ln(1+x)~x   
(1+Bx)^a-1~aBx   
[(1+x)^1/n]-1~(1/n)*x   
loga(1+x)~x/lna   
(1+x)^a-1~ax(a≠0)   
值得注意的是,等价无穷小一般只能在乘除中替换,
在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zddeng
2012-02-15 · TA获得超过3513个赞
知道大有可为答主
回答量:1892
采纳率:78%
帮助的人:653万
展开全部
应该这样说:对初学者而言,等价无穷小一般只在乘除中替换,熟练后可不受此限制。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式