计算:(2+1)(2^2+1)(2^4+1)....(2^32+1)+1
2个回答
2012-02-15
展开全部
原式子=2^1x(2^2+1)(2^4+1)....(2^32+1)+2^0x(2^2+1)(2^4+1)....(2^32+1)+1 =2^3x(2^4+1)....(2^32+1)+2^2x(2^4+1)....(2^32+1)+2^1x(2^4+1)....(2^32+1)+2^0x(2^4+1)....(2^32+1)+1
=2^7x(2^6+1)....(2^32+1)+2^6x(2^6+1)....(2^32+1)+2^5x(2^6+1)....(2^32+1)+2^4x(2^6+1)....(2^32+1)+......(2^6+1)....(2^32+1)+1
....
=2^31x(2^32+1)+2^30x(2^32+1)+2^29x(2^32+1)+......+2^0x(2^32+1)+1
=2^63+2^62+2^61+2^60+......+2^0+1
=2^7x(2^6+1)....(2^32+1)+2^6x(2^6+1)....(2^32+1)+2^5x(2^6+1)....(2^32+1)+2^4x(2^6+1)....(2^32+1)+......(2^6+1)....(2^32+1)+1
....
=2^31x(2^32+1)+2^30x(2^32+1)+2^29x(2^32+1)+......+2^0x(2^32+1)+1
=2^63+2^62+2^61+2^60+......+2^0+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询